-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
1a6e9ef
commit 76ac91e
Showing
1 changed file
with
216 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,216 @@ | ||
%Inverse dynamics for 3DOF Manipulator | ||
%% Trajectory Generation%% | ||
%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
%%Positions and variables | ||
old_pos = [49.76;0;5.380]; | ||
new_pos = [27.780; | ||
0; | ||
27.360]; | ||
tf = 3; | ||
t = 0.5; | ||
|
||
%% X trajectory | ||
x_a0 = old_pos(1,1); | ||
x_a1 = 0; | ||
x_a2 = (3/tf^2)*(new_pos(1,1)-old_pos(1,1)); | ||
x_a3 = (-2/tf^3)*(new_pos(1,1)-old_pos(1,1)); | ||
|
||
x_pos = x_a0 + x_a1*t + x_a2*t^2 + x_a3*t^3; | ||
x_vel = x_a1 + 2*x_a2*t + 3*x_a3*t^2; | ||
x_acc = 2*x_a2 + 6*x_a3*t; | ||
|
||
%% Y trajectory | ||
y_a0 = old_pos(2,1); | ||
y_a1 = 0; | ||
y_a2 = (3/tf^2)*(new_pos(2,1)-old_pos(2,1)); | ||
y_a3 = (-2/tf^3)*(new_pos(2,1)-old_pos(2,1)); | ||
|
||
y_pos = y_a0 + y_a1*t + y_a2*t^2 + y_a3*t^3; | ||
y_vel = y_a1 + 2*y_a2*t + 3*y_a3*t^2; | ||
y_acc = 2*y_a2 + 6*y_a3*t; | ||
|
||
%% Z trajectory | ||
z_a0 = old_pos(3,1); | ||
z_a1 = 0; | ||
z_a2 = (3/tf^2)*(new_pos(3,1)-old_pos(3,1)); | ||
z_a3 = (-2/tf^3)*(new_pos(3,1)-old_pos(3,1)); | ||
|
||
z_pos = z_a0 + z_a1*t + z_a2*t^2 + z_a3*t^3; | ||
z_vel = z_a1 + 2*z_a2*t + 3*z_a3*t^2; | ||
z_acc = 2*z_a2 + 6*z_a3*t; | ||
|
||
|
||
|
||
|
||
%% Inverse Kinematics %% | ||
%%%%%%%%%%%%%%%%%%%%%%%% | ||
|
||
%Variables | ||
L1 = 21.98; | ||
L2 = 27.88; | ||
L4 = sqrt(y_pos^2 + x_pos^2); | ||
L5 = z_pos-5.38; | ||
L3 = sqrt((L4^2)+(L5^2)); | ||
|
||
%Theta 1: | ||
th1_t = atan2(y_pos,x_pos); | ||
|
||
%Theta 2: | ||
phi2 = acos((L1^2+L3^2-L2^2)/(2*L1*L3)); | ||
phi1 = atan2(L4,L5); | ||
th2_t = (phi1-phi2); | ||
|
||
%Theta 3: | ||
phi3 = acos((L1^2+L2^2-L3^2)/(2*L1*L2)); | ||
th3_t = pi-phi3; | ||
|
||
|
||
%% Forward Kinematics %% | ||
%%%%%%%%%%%%%%%%%%%%%%%% | ||
|
||
r1 = 5.38; | ||
r2 = 21.98; | ||
r3 = 27.78; | ||
|
||
x = cos(th1_t)*(cos(th2_t)*(r2 + r3*cos(th3_t)) - r3*sin(th2_t)*sin(th3_t)); | ||
y = sin(th1_t)*(cos(th2_t)*(r2 + r3*cos(th3_t)) - r3*sin(th2_t)*sin(th3_t)); | ||
z = r1 - sin(th2_t)*(r2 + r3*cos(th3_t)) - r3*cos(th2_t)*sin(th3_t); | ||
|
||
|
||
%% Vectors and Rotatins %% | ||
%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
R1= [cos(th1_t), -sin(th1_t), 0; | ||
sin(th1_t), cos(th1_t), 0; | ||
0, 0, 1]; | ||
|
||
R3= [cos(th3_t), -sin(th3_t), 0; | ||
sin(th3_t), cos(th3_t), 0; | ||
0, 0, 1]; | ||
|
||
R2= [cos(th2_t), -sin(th2_t), 0; | ||
0, 0, 1; | ||
sin(th2_t), cos(th2_t), 0]; | ||
|
||
R12= R1*R2; | ||
R13 = R12 * R3; | ||
|
||
%Vectors | ||
d2= [0.1855;0;0]; | ||
l= [0.0339;0;0]; | ||
d3 = [0.142;0;0]; | ||
|
||
rvc2= (R1*R2)*d2; %To CoM grid 2 | ||
rvc3= (R1*R2*R3)*d3; %To CoM grid 3 | ||
rv2 = (R1*R2)*(l+d2);%From CoM to end of servo grid 2 | ||
|
||
%% Jacobian Matrix %% | ||
%%%%%%%%%%%%%%%%%%%%% | ||
J = [ -sin(th1_t)*(cos(th2_t)*(r2 + r3*cos(th3_t)) - r3*sin(th2_t)*sin(th3_t)), -cos(th1_t)*(sin(th2_t)*(r2 + r3*cos(th3_t)) + r3*cos(th2_t)*sin(th3_t)), -cos(th1_t)*(r3*cos(th2_t)*sin(th3_t) + r3*cos(th3_t)*sin(th2_t)); | ||
cos(th1_t)*(cos(th2_t)*(r2 + r3*cos(th3_t)) - r3*sin(th2_t)*sin(th3_t)), -sin(th1_t)*(sin(th2_t)*(r2 + r3*cos(th3_t)) + r3*cos(th2_t)*sin(th3_t)), -sin(th1_t)*(r3*cos(th2_t)*sin(th3_t) + r3*cos(th3_t)*sin(th2_t)); | ||
0, r3*sin(th2_t)*sin(th3_t) - cos(th2_t)*(r2 + r3*cos(th3_t)), r3*sin(th2_t)*sin(th3_t) - r3*cos(th2_t)*cos(th3_t)]; | ||
|
||
%xd,yd,zd | ||
cart_vel = [x_vel; y_vel; z_vel] | ||
|
||
%xdd, ydd, zdd | ||
cart_acc = [x_acc; y_acc; z_acc] | ||
|
||
%Angular velocity | ||
ang_vel = inv(J)*cart_vel; | ||
th1d = ang_vel(1,1); | ||
th2d = ang_vel(2,1); | ||
th3d = ang_vel(3,1); | ||
|
||
Jd = [ -cos(th1_t)*th1d*(cos(th2_t)*th2d*(r2 + r3*cos(th3_t)*th3d) - r3*sin(th2_t)*th2d*sin(th3_t)*th3d), sin(th1_t)*th1d*(sin(th2_t)*th2d*(r2 + r3*cos(th3_t)*th3d) + r3*cos(th2_t)*th2d*sin(th3_t)*th3d), sin(th1_t)*th1d*(r3*cos(th2_t)*th2d*sin(th3_t)*th3d + r3*cos(th3_t)*th3d*sin(th2_t)*th2d); | ||
-sin(th1_t)*th1d*(cos(th2_t)*th2d*(r2 + r3*cos(th3_t)*th3d) - r3*sin(th2_t)*th2d*sin(th3_t)*th3d), -cos(th1_t)*th1d*(sin(th2_t)*th2d*(r2 + r3*cos(th3_t)*th3d) + r3*cos(th2_t)*th2d*sin(th3_t)*th3d), -cos(th1_t)*th1d*(r3*cos(th2_t)*th2d*sin(th3_t)*th3d + r3*cos(th3_t)*th3d*sin(th2_t)*th2d); | ||
0, 0, 0]; | ||
|
||
%Angular acceleration | ||
ang_acc = inv(J)*(cart_acc-Jd*ang_vel); | ||
th1dd = ang_acc(1,1); | ||
th2dd = ang_acc(2,1); | ||
th3dd = ang_acc(3,1); | ||
|
||
%%Velocities and acceleration%% | ||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
z= [0;0;1]; | ||
|
||
w1 = th1d * z; %omega1 | ||
w2 = w1+ th2d* R12(:,3); %omega2 | ||
w3 = w2 + th3d * R13(:,3);%omega3 | ||
|
||
vc2= cross(w2,rvc2); %velocity to the CoM body 2 | ||
v2 = cross(w2,rv2); %total velocity body 2 | ||
vc3 = v2 + (cross(w2,rvc3)); %velocity to CoM body 3 | ||
%% Manipulator Dynamics %% | ||
%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
|
||
%Masses | ||
m1 = 0.249; | ||
m2 = 0.3142; | ||
|
||
%Inertia tensor 2: | ||
I2xx = 0.00053933; | ||
I2xy = 0.5*10^(-7); | ||
I2xz = 0.397*10^(-5); | ||
I2yx = 0.5*10^(-7); | ||
I2yy = 0.00055977; | ||
I2yz = 0.903*10^(-5); | ||
I2zx = 0.397*10^(-5); | ||
I2zy = 0.903*10^(-5); | ||
I2zz = 0.00005433; | ||
|
||
%Inertia tensor 3: | ||
I3xx = 0.00054544; | ||
I3xy = 0; | ||
I3xz = 0; | ||
I3yx = 0; | ||
I3yy = 0.00063851; | ||
I3yz = 0.00001013; | ||
I3zx = 0; | ||
I3zy = 0.00001013; | ||
I3zz = 0.00016132; | ||
|
||
h2 = transpose(rc2)*z; % Z part of vector rc2 for height (d2*sin(theta)) | ||
h2l = transpose(r2)*z; | ||
h3 = transpose(rc3)*z; % Z part of vector rc3 | ||
|
||
%Inertia tensors summed | ||
|
||
I2 = [0.00053933 0.00000005 0.00000397; | ||
0.00000005 0.00055977 0.00000903; | ||
0.00000397 0.00000903 0.00005433]; | ||
|
||
I3 = [0.00054544 0 0; | ||
0 0.00063851 0.00001013; | ||
0 0.00001013 0.00016132]; | ||
|
||
d1 = 0.1859; | ||
d2 = 0.0339; | ||
d3 = 0.1422; | ||
|
||
G2 = 9.81; | ||
G3 = G2; | ||
%% Energies and Lagrangian %% | ||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
|
||
%KInetic energy | ||
k2 = (1/2)*m1*(transpose(vc2)*vc2) + 1/2 * transpose(w2) * (I2*w2); %Body2 | ||
k3 = (1/2)*m2*(transpose(vc3)*vc3) + 1/2 * transpose(w3) * (I3*w3); %Body3 | ||
%Potential energy | ||
|
||
u2 = m1*G2*h2; %Body 2 | ||
u3 = m2*G3*(h2l+h3); %Body 3 | ||
|
||
%Lagrangian | ||
|
||
L = (k2-u2) + (k3-u3); | ||
%% TORQUE GENERATION %% | ||
%%%%%%%%%%%%%%%%%%%%%%% | ||
|
||
Tau1 = (-th2d*(I2yz + I2zy)*sin(th1_t)/2 - th2d*(I2zx + I2xz)*cos(th1_t)/2 + ((th2d + th3d)*(-I3yz - I3zy)*sin(th1_t))/2 - ((th2d + th3d)*(I3xz + I3zx)*cos(th1_t))/2)*th1d + (-2*m1*th1d*cos(th2_t)*d1^2*sin(th2_t) - 2*(2*cos(th3_t)^2*d3^2 + 2*d3*(d1 + d2)*cos(th3_t) + (d1 + d2 + d3)*(d1 + d2 - d3))*m2*th1d*cos(th2_t)*sin(th2_t) - 2*th1d*cos(th2_t)^2*sin(th3_t)*d3*m2*(cos(th3_t)*d3 + d1 + d2) + 2*th1d*sin(th2_t)^2*sin(th3_t)*d3*m2*(cos(th3_t)*d3 + d1 + d2))*th2d + ((-4*cos(th3_t)*d3^2*sin(th3_t) - 2*d3*(d1 + d2)*sin(th3_t))*m2*th1d*cos(th2_t)^2 - 2*th1d*sin(th2_t)*cos(th3_t)*d3*m2*(cos(th3_t)*d3 + d1 + d2)*cos(th2_t) + 2*th1d*sin(th2_t)*sin(th3_t)^2*d3^2*m2*cos(th2_t) + 2*cos(th3_t)*d3^2*m2*th1d*sin(th3_t))*th3d + (m1*cos(th2_t)^2*d1^2 + I2zz + (2*cos(th3_t)^2*d3^2 + 2*d3*(d1 + d2)*cos(th3_t) + (d1 + d2 + d3)*(d1 + d2 - d3))*m2*cos(th2_t)^2 - 2*sin(th2_t)*sin(th3_t)*d3*m2*(cos(th3_t)*d3 + d1 + d2)*cos(th2_t) - cos(th3_t)^2*d3^2*m2 + d3^2*m2 + I3zz)*th1dd + (((I2yz + I2zy)*cos(th1_t))/2 - ((I2zx + I2xz)*sin(th1_t))/2 - ((-I3yz - I3zy)*cos(th1_t))/2 - ((I3xz + I3zx)*sin(th1_t))/2)*th2dd + (-((-I3yz - I3zy)*cos(th1_t))/2 - ((I3xz + I3zx)*sin(th1_t))/2)*th3dd - th2d^2*(I2xx - I2yy)*cos(th1_t)*sin(th1_t) + th2d^2*(I2xy + I2yx)*cos(th1_t)^2/2 + th2d*(-th2d*(I2xy + I2yx)*sin(th1_t) + th1d*(I2yz + I2zy))*sin(th1_t)/2 + th1d*th2d*(I2zx + I2xz)*cos(th1_t)/2 + (th2d + th3d)^2*(I3yy - I3xx)*cos(th1_t)*sin(th1_t) + (th2d + th3d)^2*(I3yx + I3xy)*cos(th1_t)^2/2 - ((th2d + th3d)*((th2d + th3d)*(I3yx + I3xy)*sin(th1_t) - th1d*(I3yz + I3zy))*sin(th1_t))/2 + th1d*(th2d + th3d)*(I3xz + I3zx)*cos(th1_t)/2 | ||
|
||
Tau2 = (2*th2d*(I2xx - I2yy)*cos(th1_t)*sin(th1_t) - th2d*(I2xy + I2yx)*cos(th1_t)^2 - ((-th2d*(I2xy + I2yx)*sin(th1_t) + th1d*(I2yz + I2zy))*sin(th1_t))/2 + th2d*(I2xy + I2yx)*sin(th1_t)^2/2 - th1d*(I2zx + I2xz)*cos(th1_t)/2 - 2*(th2d + th3d)*(I3yy - I3xx)*cos(th1_t)*sin(th1_t) - (th2d + th3d)*(I3yx + I3xy)*cos(th1_t)^2 + (((th2d + th3d)*(I3yx + I3xy)*sin(th1_t) - th1d*(I3yz + I3zy))*sin(th1_t))/2 + ((th2d + th3d)*(I3yx + I3xy)*sin(th1_t)^2)/2 - th1d*(I3xz + I3zx)*cos(th1_t)/2)*th1d + (((I2yz + I2zy)*cos(th1_t))/2 - ((I2zx + I2xz)*sin(th1_t))/2 - ((-I3yz - I3zy)*cos(th1_t))/2 - ((I3xz + I3zx)*sin(th1_t))/2)*th1dd + (-(I2xx - I2yy)*cos(th1_t)^2 - (I2xy + I2yx)*sin(th1_t)*cos(th1_t) + I2xx + (I3yy - I3xx)*cos(th1_t)^2 - (I3yx + I3xy)*sin(th1_t)*cos(th1_t) + d3^2*m2 + I3xx)*th2dd + ((I3yy - I3xx)*cos(th1_t)^2 - (I3yx + I3xy)*sin(th1_t)*cos(th1_t) + I3xx)*th3dd + m1*th1d^2*cos(th2_t)*d1^2*sin(th2_t) + (2*cos(th3_t)^2*d3^2 + 2*d3*(d1 + d2)*cos(th3_t) + (d1 + d2 + d3)*(d1 + d2 - d3))*m2*th1d^2*cos(th2_t)*sin(th2_t) + th1d^2*cos(th2_t)^2*sin(th3_t)*d3*m2*(cos(th3_t)*d3 + d1 + d2) - th1d^2*sin(th2_t)^2*sin(th3_t)*d3*m2*(cos(th3_t)*d3 + d1 + d2) + m1*G2*cos(th2_t)*d1 + m2*G3*(cos(th2_t)*(d1 + d2) + (-sin(th2_t)*sin(th3_t) + cos(th2_t)*cos(th3_t))*d3) | ||
|
||
Tau3 = (-2*(th2d + th3d)*(I3yy - I3xx)*cos(th1_t)*sin(th1_t) - (th2d + th3d)*(I3yx + I3xy)*cos(th1_t)^2 + (((th2d + th3d)*(I3yx + I3xy)*sin(th1_t) - th1d*(I3yz + I3zy))*sin(th1_t))/2 + ((th2d + th3d)*(I3yx + I3xy)*sin(th1_t)^2)/2 - th1d*(I3xz + I3zx)*cos(th1_t)/2)*th1d + (-((-I3yz - I3zy)*cos(th1_t))/2 - ((I3xz + I3zx)*sin(th1_t))/2)*th1dd + ((I3yy - I3xx)*cos(th1_t)^2 - (I3yx + I3xy)*sin(th1_t)*cos(th1_t) + I3xx)*th2dd + ((I3yy - I3xx)*cos(th1_t)^2 - (I3yx + I3xy)*sin(th1_t)*cos(th1_t) + I3xx)*th3dd - ((-4*cos(th3_t)*d3^2*sin(th3_t) - 2*d3*(d1 + d2)*sin(th3_t))*m2*th1d^2*cos(th2_t)^2)/2 + th1d^2*sin(th2_t)*cos(th3_t)*d3*m2*(cos(th3_t)*d3 + d1 + d2)*cos(th2_t) - th1d^2*sin(th2_t)*sin(th3_t)^2*d3^2*m2*cos(th2_t) - cos(th3_t)*d3^2*m2*th1d^2*sin(th3_t) + m2*G3*(-sin(th2_t)*sin(th3_t) + cos(th2_t)*cos(th3_t))*d3 | ||
|