-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgenerate_env_features.py
163 lines (121 loc) · 5.45 KB
/
generate_env_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch
import argparse
import numpy as np
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data.dataloader import default_collate
from torchvision import transforms
import torchvision.models as tmodels
import torch.nn as nn
from PIL import Image
import tqdm
import decord
decord.bridge.set_bridge('torch')
from state_prediction.config.defaults import get_config
from state_prediction.data.utils import strided_window_frames
from state_prediction.models.env_model import EnvStatePredictor
class FrameDataset:
def __init__(self, video, cfg):
self.transform = transforms.Compose([
transforms.Lambda(lambda x: Image.fromarray(x)),
transforms.Resize(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
vr = decord.VideoReader(video)
fps = vr.get_avg_fps()
stride = int(fps / cfg.DOWNSTREAM.VIS_FPS)
frame_inds = np.arange(0, len(vr), stride)
self.frames = vr.get_batch(frame_inds).numpy()
print (f'Generating frame features for {video}. N = {len(self.frames)} (fps: {fps}, stride: {stride})')
def __getitem__(self, index):
frame = self.frames[index] # (H, W, 3)
frame = self.transform(frame)
return frame
def __len__(self):
return len(self.frames)
class EnvDataset:
def __init__(self, video, frame_feats, cfg):
self.cfg = cfg
self.win_size = cfg.DATA.WINDOW_SIZE
self.mem_size = cfg.DATA.MEMORY_SIZE
self.walkthrough_len = cfg.DATA.WALKTHROUGH_LENGTH
vr = decord.VideoReader(video)
fps = vr.get_avg_fps()
N_env_feats = int(len(vr) / fps * cfg.DOWNSTREAM.ENV_FPS)
N_frame_feats = frame_feats.shape[0]
query_inds = np.linspace(0, 1, N_env_feats) * (N_frame_feats - 1)
self.query_inds = query_inds.astype(int).tolist()
self.frame_feats = frame_feats
self.T = self.frame_feats.shape[0]
def __getitem__(self, index):
query_idx = self.query_inds[index]
query_inds = torch.LongTensor([query_idx])
frame_inds, mem_blocks, rel_frame_pos, rel_query_pos = strided_window_frames(
query_inds, self.T, self.mem_size, self.win_size, False
)
instance = {
'rgb': self.frame_feats[frame_inds], # (S, 2048)
'query_rgb': self.frame_feats[query_idx].unsqueeze(0), # (1, 2048)
'mem_blocks': mem_blocks,
'frame_inds': (rel_frame_pos * (self.walkthrough_len - 1)).long(),
'query_inds': (rel_query_pos * (self.walkthrough_len - 1)).long(),
}
return instance
def __len__(self):
return len(self.query_inds)
def collate_fn(self, batch):
keys = batch[0].keys()
transposed_batch = {key: [item[key] for item in batch] for key in keys}
for key in transposed_batch:
if key in ['env_rgb']:
transposed_batch[key] = pad_sequence(transposed_batch[key], batch_first=True)
else:
transposed_batch[key] = default_collate(transposed_batch[key])
return transposed_batch
def generate_frame_feats(args, cfg):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
net = tmodels.resnet50(pretrained=True)
net.fc = nn.Identity()
net.eval().to(device)
dataset = FrameDataset(args.video, cfg)
loader = torch.utils.data.DataLoader(dataset, batch_size=32, shuffle=False, num_workers=8)
features = []
for batch in tqdm.tqdm(loader, total=len(loader), desc='frames'):
batch = batch.to(device)
with torch.no_grad():
feat = net(batch).cpu() # (B, 2048)
features.append(feat)
features = torch.cat(features, 0) # (N, 2048)
return features
def generate_env_feats(frame_feats, args, cfg):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
net = EnvStatePredictor(cfg)
net.eval().to(device)
dataset = EnvDataset(args.video, frame_feats, cfg)
loader = torch.utils.data.DataLoader(dataset, batch_size=64, shuffle=False, num_workers=8, collate_fn=dataset.collate_fn)
features = []
for batch in tqdm.tqdm(loader, total=len(loader), desc='env clips'):
batch = {k: v.to(device) for k, v in batch.items()}
with torch.no_grad():
feat, _ = net.env_forward(batch)
features.append(feat.cpu())
features = torch.cat(features, 0)[:, 0] # (N, D)
print ('Generated env features:', features.shape)
if args.save:
torch.save(features, args.save)
return features
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', default=None, help='config yaml for experiment')
parser.add_argument('--video', default='video.mp4', help='Video to generate env features for')
parser.add_argument('--save', default=None, help='path to save environment features to (optional)')
parser.add_argument('opts', default=None, nargs=argparse.REMAINDER, help="Modify config options from command line")
args = parser.parse_args()
cfg = get_config(args.config, args.opts)
frame_features = generate_frame_feats(args, cfg)
env_features = generate_env_feats(frame_features, args, cfg)