Skip to content

Commit

Permalink
add lda content
Browse files Browse the repository at this point in the history
  • Loading branch information
ad min committed Mar 7, 2016
1 parent f34f87b commit f59356c
Showing 1 changed file with 6 additions and 6 deletions.
12 changes: 6 additions & 6 deletions 聚类/LDA/lda.md
Original file line number Diff line number Diff line change
Expand Up @@ -456,33 +456,33 @@

  那么在在线`VB`算法中,`alpha``eta`是如何更新的呢?参考文献【8】提供了计算方法。给定数据集,`dirichlet`参数的可以通过最大化下面的对数似然来估计

<div align="center"><img src="imgs/3.3.1.png" width = "500" height = "140" alt="3.3.1" align="center" /></div><br>
<div align="center"><img src="imgs/3.3.1.png" width = "500" height = "150" alt="3.3.1" align="center" /></div><br>

&emsp;&emsp;其中,

<div align="center"><img src="imgs/3.3.2.png" width = "230" height = "45" alt="3.3.2" align="center" /></div><br>
<div align="center"><img src="imgs/3.3.2.png" width = "200" height = "40" alt="3.3.2" align="center" /></div><br>

&emsp;&emsp;有多种方法可以最大化这个目标函数,如梯度上升,`Newton-Raphson`等。`Spark`使用`Newton-Raphson`方法估计参数,更新`alpha``Newton-Raphson`提供了一种参数二次收敛的方法,
它一般的更新规则如下公式**(3.3.3)**:

<div align="center"><img src="imgs/3.3.3.png" width = "200" height = "20" alt="3.3.2" align="center" /></div><br>
<div align="center"><img src="imgs/3.3.3.png" width = "300" height = "30" alt="3.3.2" align="center" /></div><br>

&emsp;&emsp;其中,`H`表示海森矩阵。对于这个特别的对数似然函数,可以应用`Newton-Raphson`去解决高维数据,因为它可以在线性时间求出海森矩阵的逆矩阵。一般情况下,海森矩阵可以用一个对角矩阵和一个元素都一样的矩阵的和来表示。
如下公式**(3.3.4)**`Q`是对角矩阵,`C11`是元素相同的一个矩阵。

<div align="center"><img src="imgs/3.3.4.png" width = "200" height = "100" alt="3.3.2" align="center" /></div><br>
<div align="center"><img src="imgs/3.3.4.png" width = "300" height = "150" alt="3.3.2" align="center" /></div><br>

&emsp;&emsp;为了计算海森矩阵的逆矩阵,我们观察到,对任意的可逆矩阵`Q`和非负标量`c`,有下列式子**(3.3.5)**:

<div align="center"><img src="imgs/3.3.5.png" width = "550" height = "170" alt="3.3.5" align="center" /></div><br>

&emsp;&emsp;因为`Q`是对角矩阵,所以`Q`的逆矩阵可以很容易的计算出来。所以`Newton-Raphson`的更新规则可以重写为如下**(3.3.6)**的形式

<div align="center"><img src="imgs/3.3.6.png" width = "180" height = "45" alt="3.3.6" align="center" /></div><br>
<div align="center"><img src="imgs/3.3.6.png" width = "250" height = "50" alt="3.3.6" align="center" /></div><br>

&emsp;&emsp;其中`b`如下公式**(3.3.7)**

<div align="center"><img src="imgs/3.3.7.png" width = "200" height = "30" alt="3.3.7" align="center" /></div><br>
<div align="center"><img src="imgs/3.3.7.png" width = "300" height = "40" alt="3.3.7" align="center" /></div><br>

# 4 LDA代码实现

Expand Down

0 comments on commit f59356c

Please sign in to comment.