Skip to content
/ JANN Public

An easy to use artificial neural network library implemented in Java.

License

Notifications You must be signed in to change notification settings

emre1512/JANN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

JANN

JANN is an easy to use artificial neural network (ANN) library implemented in Java.

Example Usage

// Load data
List<float[]> traindata = DataLoader.loadData("C:\\JANN\\traindata.txt", Seperator.COMMA);
List<float[]> testdata = DataLoader.loadData("C:\\JANN\\testdata.txt", Seperator.COMMA);
	
// Create neural network
NeuralNetwork nn = new NeuralNetwork(0.1f, 5E-3f, 3000000, ErrorFunction.MSE);
nn.addLayer(new HiddenLayer(2, ActivationFunction.SIGMOID));
nn.addLayer(new HiddenLayer(3, ActivationFunction.SIGMOID));
nn.addLayer(new OutputLayer(2, ActivationFunction.SIGMOID)); // Neuron count must be same with class count at OutputLayer!

// Train and test
NetworkController nc = new NetworkController(nn);
nc.showIterations(50000);
nc.trainNetwork(traindata);	
nc.testNetwork(testdata);

Sample Output

======= Training Starts =======
Max Epochs        : 3000000
Max Error         : 0.005
Learning Rate     : 0.1
===============================

===============================
Current iteration :250000
Current error     :0.008027799
===============================

======== Training Ends ========
Epochs : 481179
Error  : 0.004999999
===============================

========= Test Starts =========
Input: |0,00 0,00 | Result: 0 | Real Result: 0
Input: |0,00 1,00 | Result: 1 | Real Result: 1
Input: |1,00 0,00 | Result: 1 | Real Result: 1
Input: |1,00 1,00 | Result: 0 | Real Result: 0

========== Test Ends ==========
Success: %100.0

Usage

// Load data
List<float[]> traindata = DataLoader.loadData(path, Seperator.COMMA);	// Read data which is seperated by COMMA, SPACE or TAB.
List<float[]> testdata = DataLoader.loadData(path, Seperator.COMMA);

// Create neural network
NeuralNetwork nn = new NeuralNetwork(learningRate, maxError, maxEpoch, ErrorFunction.MSE);	// Set learning rate, desired max error and epoch count.
nn.addLayer(new HiddenLayer(neuronCount, activationFunction));	// Set neuron count in layer and activation functions of the neurons.
...
...
...
nn.addLayer(new HiddenLayer(neuronCount, activationFunction));
nn.addLayer(new OutputLayer(neuronCount, activationFunction));	// Every network have to have an OutputLayer and the neuron count in OutpuLayer must be same with class count!

// Train and test
NetworkController nc = new NetworkController(nn);
nc.showIterations(iterationLogStepCount);	// Shows the iteration log. Not necessary.
nc.trainNetwork(traindata);	
nc.testNetwork(testdata);

Data

The training data and test data should be in the form of:

0.4, 0.7, 1.0, 1
0.5, 0.3, 2.5, 0
0.2, 0.2, 1.2, 2
0.6, 0.1, 2.0, 3
0.7, 0.9, 2.2, 1
0.5, 0.5, 2.0, 0
...
...
...

Note 1: The last column is class label. The class labels should start form "0" and increment as "1, 2, 3, 4, 5, 6..." Note 2: Data columns can be seperated by space or tab too.

Space/tab seperated data:

0.4, 0.7, 1.0, 1
0.5, 0.3, 2.5, 0
0.2, 0.2, 1.2, 2
0.6, 0.1, 2.0, 3
0.7, 0.9, 2.2, 1
0.5, 0.5, 2.0, 0
...
...
...

Contribution

This library is still under development. You can open issues for the bugs you found. Also you can send pull requests for enhancements/bug fixes.

License

See more at LICENSE page.

Releases

No releases published

Packages

No packages published

Languages