forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathte_wrapper.cpp
315 lines (277 loc) · 8.84 KB
/
te_wrapper.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
#include <torch/csrc/jit/runtime/static/te_wrapper.h>
#include <ATen/CPUFunctions.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/runtime/static/impl.h>
#include <torch/csrc/jit/tensorexpr/expr.h>
#include <torch/csrc/jit/tensorexpr/operators/misc.h>
#include <torch/csrc/jit/tensorexpr/operators/operators.h>
namespace torch {
namespace jit {
using namespace torch::jit::tensorexpr;
// Use the width of an AVX-512 vector by default; this happens to work OK for
// AVX2 as well. Some ops benefit from using multiple AVX ports, in which case
// they are vectorized by twice this constant. An exception is logit, since it
// contains FP divide, which is single-ported.
static constexpr int kVectorWidth = 16;
#ifdef TORCH_ENABLE_LLVM
void TEWrapper::update(std::unique_ptr<LLVMCodeGen>&& cg_) {
cg = std::move(cg_);
}
void TEWrapper::call(const std::vector<void*>& args) {
cg->call_raw(args);
}
void optimizePointwise(LoopNest* ln, Tensor target, int width) {
std::vector<ForPtr> loops = ln->getLoopStmtsFor(target);
ForPtr inner, tail;
TORCH_CHECK(loops.size() > 0, "No loops created for pointwise op");
ln->splitWithTail(loops[0], width, &inner, &tail);
ln->vectorize(inner);
}
std::shared_ptr<TEWrapper> wrapTECompute(
std::shared_ptr<TEWrapper> wrap,
Tensor out,
std::vector<CodeGen::BufferArg> args,
int width = kVectorWidth) {
LoopNest ln({out});
optimizePointwise(&ln, out, width);
ln.prepareForCodegen();
StmtPtr s = ln.root_stmt();
s = IRSimplifier::simplify(s);
args.insert(args.begin(), out);
auto cg = std::make_unique<LLVMCodeGen>(s, args);
cg->cleanup_memory();
wrap->update(std::move(cg));
return wrap;
}
std::shared_ptr<TEWrapper> wrapTECompute(
std::shared_ptr<TEWrapper> wrap,
LoopNest* ln,
std::vector<CodeGen::BufferArg> args) {
auto cg = std::make_unique<LLVMCodeGen>(ln->root_stmt(), args);
wrap->update(std::move(cg));
return wrap;
}
#else
void TEWrapper::call(const std::vector<void*>& args) {
DCHECK(0 && "Invalid call");
}
std::shared_ptr<TEWrapper> wrapTECompute(
std::shared_ptr<TEWrapper> wrap,
Tensor out,
std::vector<CodeGen::BufferArg> args,
int width = kVectorWidth) {
return wrap;
}
std::shared_ptr<TEWrapper> wrapTECompute(
std::shared_ptr<TEWrapper> wrap,
LoopNest* ln,
std::vector<CodeGen::BufferArg> args) {
return wrap;
}
#endif
namespace {
std::mutex& getNNCCacheMutex() {
static std::mutex nncCacheMutex;
return nncCacheMutex;
}
FastMap<NodeKind, std::shared_ptr<TEWrapper>>& getNNCCache() {
static FastMap<NodeKind, std::shared_ptr<TEWrapper>> nncCache;
return nncCache;
}
std::shared_ptr<TEWrapper> lookupNNCCache(NodeKind kind) {
std::lock_guard<std::mutex> lock(getNNCCacheMutex());
auto it = getNNCCache().find(kind);
if (it != getNNCCache().end()) {
return it->second;
}
return nullptr;
}
void updateNNCCache(NodeKind kind, std::shared_ptr<TEWrapper> code) {
std::lock_guard<std::mutex> lock(getNNCCacheMutex());
getNNCCache()[kind] = code;
}
} // namespace
std::shared_ptr<TEWrapper> createDiv() {
auto wrap = lookupNNCCache(aten::div);
if (wrap) {
return wrap;
}
wrap = std::make_shared<TEWrapper>();
auto dim = VarHandle("dim", kInt);
auto mode = VarHandle("mode", kInt);
BufHandle A("A", {dim}, kFloat);
BufHandle B("B", {dim}, kFloat);
using axis = const VarHandle&;
Tensor C = Compute("C", {dim}, [&](axis x) {
auto true_div_result = A.load(x) / B.load(x);
auto mode_default = IntImm::make(0);
auto mode_trunc = IntImm::make(1);
auto mode_floor = IntImm::make(2);
// this is a glorified ternary choice operator train
return CompareSelect::make(
mode,
mode_default,
true_div_result,
CompareSelect::make(
mode,
mode_trunc,
trunc(true_div_result),
floor(true_div_result),
kEQ),
kEQ);
});
wrap = wrapTECompute(wrap, C, {A, B, mode, dim});
updateNNCCache(aten::div, wrap);
return wrap;
}
std::shared_ptr<TEWrapper> createLogit() {
auto wrap = lookupNNCCache(aten::logit);
if (wrap) {
return wrap;
}
wrap = std::make_shared<TEWrapper>();
auto N = VarHandle("N", kInt);
auto C = VarHandle("C", kFloat);
BufHandle A("A", {N}, kFloat);
Tensor B = Compute("B", {N}, [&](const VarHandle& i) {
auto A_elem = [&]() {
auto elem = A.load(i);
auto one = FloatImm::make(1.0f);
const auto& min = C;
auto max = one - C;
elem = CompareSelect::make(elem, min, min, elem, kLT);
return CompareSelect::make(elem, max, max, elem, kGT);
}();
return log_vml(A_elem / (FloatImm::make(1.0f) - A_elem));
});
wrap = wrapTECompute(wrap, B, {A, N, C});
updateNNCCache(aten::logit, wrap);
return wrap;
}
std::shared_ptr<TEWrapper> createRelu() {
auto wrap = lookupNNCCache(aten::relu);
if (wrap) {
return wrap;
}
wrap = std::make_shared<TEWrapper>();
auto N = VarHandle("N", kInt);
BufHandle A("A", {N}, kFloat);
Tensor B = Compute("B", {N}, [&](const VarHandle& i) {
auto zero = FloatImm::make(0.f);
auto a = A.load(i);
return CompareSelect::make(a, zero, zero, a, kLT);
});
wrap = wrapTECompute(wrap, B, {A, N});
updateNNCCache(aten::relu, wrap);
return wrap;
}
std::shared_ptr<TEWrapper> createTanh() {
auto wrap = lookupNNCCache(aten::tanh);
if (wrap) {
return wrap;
}
wrap = std::make_shared<TEWrapper>();
auto N = VarHandle("N", kInt);
BufHandle A("A", {N}, kFloat);
Tensor B = Compute("B", {N}, [&](const VarHandle& i) {
auto a = A.load(i);
return fast_tanh(a);
});
wrap = wrapTECompute(wrap, B, {A, N});
updateNNCCache(aten::tanh, wrap);
return wrap;
}
std::shared_ptr<TEWrapper> createSigmoid() {
auto wrap = lookupNNCCache(aten::sigmoid);
if (wrap) {
return wrap;
}
wrap = std::make_shared<TEWrapper>();
auto N = VarHandle("N", kInt);
BufHandle A("A", {N}, kFloat);
Tensor B = Compute(
"B", {N}, [&](const VarHandle& i) { return fast_sigmoid(A.load(i)); });
wrap = wrapTECompute(wrap, B, {A, N});
updateNNCCache(aten::sigmoid, wrap);
return wrap;
}
std::shared_ptr<TEWrapper> createClamp() {
static auto clamp_symbol = c10::Symbol::fromQualString("aten::clamp");
auto wrap = lookupNNCCache(clamp_symbol);
if (wrap) {
return wrap;
}
wrap = std::make_shared<TEWrapper>();
auto N = VarHandle("N", kInt);
auto min_handle = VarHandle("min", kFloat);
auto max_handle = VarHandle("max", kFloat);
BufHandle A("A", {N}, kFloat);
Tensor result = Compute("aten_clamp", {N}, [&](const VarHandle& i) {
auto a = A.load(i);
return tensorexpr::clamp(min_handle, max_handle, a);
});
wrap = wrapTECompute(wrap, result, {A, min_handle, max_handle, N});
updateNNCCache(clamp_symbol, wrap);
return wrap;
}
std::shared_ptr<TEWrapper> createClampNanToNum() {
static auto symbol =
c10::Symbol::fromQualString("static_runtime::clamp_nan_to_num");
auto wrap = lookupNNCCache(symbol);
if (wrap) {
return wrap;
}
wrap = std::make_shared<TEWrapper>();
auto N = VarHandle("N", kInt);
auto min_handle = VarHandle("min", kFloat);
auto max_handle = VarHandle("max", kFloat);
auto nan_replace_val = VarHandle("nan_replace_val", kFloat);
BufHandle A("A", {N}, kFloat);
Tensor result = Compute("aten_clamp", {N}, [&](const VarHandle& i) {
auto a = A.load(i);
auto clamp = tensorexpr::clamp(min_handle, max_handle, a);
auto is_nan = tensorexpr::isnan(clamp);
auto nans_replaced =
tensorexpr::CompareSelect::make(is_nan, 1, nan_replace_val, clamp, kEQ);
return nans_replaced;
});
wrap = wrapTECompute(
wrap, result, {A, min_handle, max_handle, nan_replace_val, N});
updateNNCCache(symbol, wrap);
return wrap;
}
std::shared_ptr<TEWrapper> createSignedLog1p() {
static auto signed_log1p_symbol =
c10::Symbol::fromQualString("static_runtime::signed_log1p");
auto wrap = lookupNNCCache(signed_log1p_symbol);
if (wrap) {
return wrap;
}
wrap = std::make_shared<TEWrapper>();
auto N = VarHandle("N", kInt);
BufHandle A("A", {N}, kFloat);
Tensor abs_result = Compute("aten_abs", {N}, [&](const VarHandle& i) {
return tensorexpr::abs(A.load(i));
});
Tensor log1p_result = Compute("aten_log1p", {N}, [&](const VarHandle& i) {
return log1p(abs_result.load(i));
});
Tensor sign = computeSign({A}, {N});
Tensor output = Compute("aten_mul", {N}, [&](const VarHandle& i) {
return sign.load(i) * log1p_result.load(i);
});
LoopNest ln({output}, {abs_result, log1p_result, sign, output});
GRAPH_DEBUG("Original stmt: ", *ln.root_stmt());
ln.inlineIntermediateBufs(true);
ln.prepareForCodegen();
ln.simplify();
ln.vectorizeInnerLoops();
ln.simplify();
GRAPH_DEBUG("Final stmt: ", *ln.root_stmt());
wrap = wrapTECompute(wrap, &ln, {output, A, N});
updateNNCCache(signed_log1p_symbol, wrap);
return wrap;
}
} // namespace jit
} // namespace torch