forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocessed_node_wrapper.h
213 lines (182 loc) · 6.46 KB
/
processed_node_wrapper.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#pragma once
#include <ATen/ATen.h>
#include <torch/csrc/jit/runtime/static/impl.h>
namespace torch {
namespace jit {
// The following class facilitates code reuse between ProcessedNodeInputWrapper
// and ProcessedNodeOutputWrapper via CRTP
template <typename DerivedWrapper>
class ProcessedNodeWrapperBase {
public:
class ProcessedNodeWrapperBaseIter {
public:
using iterator_category = std::forward_iterator_tag;
using value_type = at::Tensor;
using difference_type = size_t;
using pointer = const at::Tensor*;
using reference = const at::Tensor&;
ProcessedNodeWrapperBaseIter() = default;
ProcessedNodeWrapperBaseIter(
const DerivedWrapper* container,
size_t start_idx)
: container_(container), idx_(start_idx) {}
ProcessedNodeWrapperBaseIter& operator++() {
TORCH_DCHECK_NE(idx_, container_->size());
++idx_;
return *this;
}
ProcessedNodeWrapperBaseIter operator++(int) {
ProcessedNodeWrapperBaseIter old = *this;
++(*this);
return old;
}
reference operator*() const {
TORCH_CHECK(container_ != nullptr);
return (*container_)[idx_];
}
pointer operator->() const {
TORCH_CHECK(container_ != nullptr);
return &(*container_)[idx_];
}
friend bool operator==(
ProcessedNodeWrapperBaseIter lhs,
ProcessedNodeWrapperBaseIter rhs) {
TORCH_DCHECK_EQ(lhs.container_, rhs.container_);
return lhs.idx_ == rhs.idx_;
}
friend bool operator!=(
ProcessedNodeWrapperBaseIter lhs,
ProcessedNodeWrapperBaseIter rhs) {
return !(lhs == rhs);
}
private:
const DerivedWrapper* container_ = nullptr;
size_t idx_ = 0;
};
// NB: to mimic the behavior of at::ArrayRef, both iterators are
// the const version.
using iterator = ProcessedNodeWrapperBaseIter;
using const_iterator = ProcessedNodeWrapperBaseIter;
using size_type = size_t;
using value_type = at::Tensor;
explicit ProcessedNodeWrapperBase(ProcessedNode& pnode) : pnode_(pnode) {}
iterator begin() {
return ProcessedNodeWrapperBaseIter(static_cast<DerivedWrapper*>(this), 0);
}
iterator end() {
return ProcessedNodeWrapperBaseIter(
static_cast<DerivedWrapper*>(this),
static_cast<DerivedWrapper*>(this)->size());
}
const_iterator begin() const {
return ProcessedNodeWrapperBaseIter(
static_cast<const DerivedWrapper*>(this), 0);
}
const_iterator end() const {
return ProcessedNodeWrapperBaseIter(
static_cast<const DerivedWrapper*>(this),
static_cast<const DerivedWrapper*>(this)->size());
}
const_iterator cbegin() const {
return ProcessedNodeWrapperBaseIter(
static_cast<const DerivedWrapper*>(this), 0);
}
const_iterator cend() const {
return ProcessedNodeWrapperBaseIter(
static_cast<const DerivedWrapper*>(this),
static_cast<const DerivedWrapper*>(this)->size());
}
bool empty() const {
return static_cast<const DerivedWrapper*>(this)->size() == 0;
}
protected:
ProcessedNode& pnode_;
};
// A ProcessedNodeWrapperBase lets us use ProcessedNode directly in a context
// where a container of IValues is expected. This trick is handy for avoiding
// refcount bumps in perf-sensitive native ops. For example, suppose we have an
// op that takes a list of tensors as an argument and we've turned the op into a
// variadic variant in static runtime. To use the PyTorch library implementation
// of the op, we would have to pack the variadic arguments into a list:
// std::vector<Tensor> tensor_list;
// tensor_list.reserve(pnode->num_outputs());
// for (const auto i : c10::irange(pnode->num_inputs())
// tensor_list.push_back(pnode->Input(i).toTensor());
// op_impl(tensor_list);
// Using ProcessedNodeWrapperBase, we can avoid this round of refcount bumps.
// All we need to do is turn `op_impl` into a template and pass it
// ProcessedNodeInputWrapper(*pnode)!
class ProcessedNodeInputWrapper
: public ProcessedNodeWrapperBase<ProcessedNodeInputWrapper> {
public:
// The last `back_elements_ignored` elements are not considered.
// Same for the first `front_elements_ignored` elements.
// This is useful for ops where
// only the first N elements are tensors (N < inputs.size()).
// For instance, the last argument to VarStack is an integer dimension.
explicit ProcessedNodeInputWrapper(
ProcessedNode& pnode,
size_t front_elements_ignored = 0,
size_t back_elements_ignored = 1)
: ProcessedNodeWrapperBase<ProcessedNodeInputWrapper>(pnode),
front_elements_ignored_(front_elements_ignored),
back_elements_ignored_(back_elements_ignored) {
TORCH_CHECK(front_elements_ignored_ <= pnode_.num_inputs());
TORCH_CHECK(
back_elements_ignored_ <=
pnode_.num_inputs() - front_elements_ignored_);
}
size_t size() const {
return pnode_.num_inputs() - back_elements_ignored_ -
front_elements_ignored_;
}
const at::Tensor& operator[](size_t idx) const {
TORCH_CHECK(idx < size());
return pnode_.Input(front_elements_ignored_ + idx).toTensor();
}
const at::Tensor& front() const {
TORCH_CHECK(
!empty(),
"Attempted to access front() of empty ProcessedNodeInputWrapper");
return pnode_.Input(front_elements_ignored_).toTensor();
}
const at::Tensor& back() const {
TORCH_CHECK(
!empty(),
"Attempted to access back() of empty ProcessedNodeInputWrapper");
return pnode_.Input(pnode_.num_inputs() - back_elements_ignored_ - 1)
.toTensor();
}
private:
size_t front_elements_ignored_;
size_t back_elements_ignored_;
};
// Similar to ProcessedNodeInputWrapper, but wraps outputs and allows for
// writing.
class ProcessedNodeOutputWrapper
: public ProcessedNodeWrapperBase<ProcessedNodeOutputWrapper> {
public:
using ProcessedNodeWrapperBase<
ProcessedNodeOutputWrapper>::ProcessedNodeWrapperBase;
size_t size() const {
return pnode_.num_outputs();
}
at::Tensor& operator[](size_t idx) const {
TORCH_CHECK(idx < size());
return pnode_.Output(idx).toTensor();
}
at::Tensor& front() const {
TORCH_CHECK(
!empty(),
"Attempted to access front() of empty ProcessedNodeOutputWrapper");
return pnode_.Output(0).toTensor();
}
at::Tensor& back() const {
TORCH_CHECK(
!empty(),
"Attempted to access back() of empty ProcessedNodeOutputWrapper");
return pnode_.Output(size() - 1).toTensor();
}
};
} // namespace jit
} // namespace torch