Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: dpmodel energy loss & consistent tests #4531

Merged
merged 6 commits into from
Jan 7, 2025
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions deepmd/dpmodel/loss/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
# SPDX-License-Identifier: LGPL-3.0-or-later
337 changes: 337 additions & 0 deletions deepmd/dpmodel/loss/ener.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,337 @@
# SPDX-License-Identifier: LGPL-3.0-or-later
from typing import (
Optional,
)

import array_api_compat
import numpy as np

from deepmd.dpmodel.loss.loss import (
Loss,
)
from deepmd.utils.data import (
DataRequirementItem,
)
from deepmd.utils.version import (
check_version_compatibility,
)


class EnergyLoss(Loss):
def __init__(
self,
starter_learning_rate: float,
start_pref_e: float = 0.02,
limit_pref_e: float = 1.00,
start_pref_f: float = 1000,
limit_pref_f: float = 1.00,
start_pref_v: float = 0.0,
limit_pref_v: float = 0.0,
start_pref_ae: float = 0.0,
limit_pref_ae: float = 0.0,
start_pref_pf: float = 0.0,
limit_pref_pf: float = 0.0,
relative_f: Optional[float] = None,
enable_atom_ener_coeff: bool = False,
start_pref_gf: float = 0.0,
limit_pref_gf: float = 0.0,
numb_generalized_coord: int = 0,
**kwargs,
) -> None:
self.starter_learning_rate = starter_learning_rate
self.start_pref_e = start_pref_e
self.limit_pref_e = limit_pref_e
self.start_pref_f = start_pref_f
self.limit_pref_f = limit_pref_f
self.start_pref_v = start_pref_v
self.limit_pref_v = limit_pref_v
self.start_pref_ae = start_pref_ae
self.limit_pref_ae = limit_pref_ae
self.start_pref_pf = start_pref_pf
self.limit_pref_pf = limit_pref_pf
self.relative_f = relative_f
self.enable_atom_ener_coeff = enable_atom_ener_coeff
self.start_pref_gf = start_pref_gf
self.limit_pref_gf = limit_pref_gf
self.numb_generalized_coord = numb_generalized_coord
self.has_e = self.start_pref_e != 0.0 or self.limit_pref_e != 0.0
self.has_f = self.start_pref_f != 0.0 or self.limit_pref_f != 0.0
self.has_v = self.start_pref_v != 0.0 or self.limit_pref_v != 0.0
self.has_ae = self.start_pref_ae != 0.0 or self.limit_pref_ae != 0.0
self.has_pf = self.start_pref_pf != 0.0 or self.limit_pref_pf != 0.0
self.has_gf = self.start_pref_gf != 0.0 or self.limit_pref_gf != 0.0
if self.has_gf and self.numb_generalized_coord < 1:
raise RuntimeError(
"When generalized force loss is used, the dimension of generalized coordinates should be larger than 0"
)

def call(
self,
learning_rate: float,
natoms: int,
model_dict: dict[str, np.ndarray],
label_dict: dict[str, np.ndarray],
) -> dict[str, np.ndarray]:
"""Calculate loss from model results and labeled results."""
energy = model_dict["energy"]
force = model_dict["force"]
virial = model_dict["virial"]
atom_ener = model_dict["atom_ener"]
energy_hat = label_dict["energy"]
force_hat = label_dict["force"]
virial_hat = label_dict["virial"]
atom_ener_hat = label_dict["atom_ener"]
atom_pref = label_dict["atom_pref"]
find_energy = label_dict["find_energy"]
find_force = label_dict["find_force"]
find_virial = label_dict["find_virial"]
find_atom_ener = label_dict["find_atom_ener"]
find_atom_pref = label_dict["find_atom_pref"]
xp = array_api_compat.array_namespace(
energy,
force,
virial,
atom_ener,
energy_hat,
force_hat,
virial_hat,
atom_ener_hat,
atom_pref,
)

if self.enable_atom_ener_coeff:
# when ener_coeff (\nu) is defined, the energy is defined as
# E = \sum_i \nu_i E_i
# instead of the sum of atomic energies.
#
# A case is that we want to train reaction energy
# A + B -> C + D
# E = - E(A) - E(B) + E(C) + E(D)
# A, B, C, D could be put far away from each other
atom_ener_coeff = label_dict["atom_ener_coeff"]
atom_ener_coeff = xp.reshape(atom_ener_coeff, xp.shape(atom_ener))
energy = xp.sum(atom_ener_coeff * atom_ener, 1)
if self.has_f or self.has_pf or self.relative_f or self.has_gf:
force_reshape = xp.reshape(force, [-1])
force_hat_reshape = xp.reshape(force_hat, [-1])
diff_f = force_hat_reshape - force_reshape

if self.relative_f is not None:
force_hat_3 = xp.reshape(force_hat, [-1, 3])
norm_f = xp.reshape(xp.norm(force_hat_3, axis=1), [-1, 1]) + self.relative_f
diff_f_3 = xp.reshape(diff_f, [-1, 3])
Fixed Show fixed Hide fixed
Fixed Show fixed Hide fixed
diff_f_3 = diff_f_3 / norm_f
diff_f = xp.reshape(diff_f_3, [-1])

atom_norm = 1.0 / natoms
atom_norm_ener = 1.0 / natoms
lr_ratio = learning_rate / self.starter_learning_rate
pref_e = find_energy * (
self.limit_pref_e + (self.start_pref_e - self.limit_pref_e) * lr_ratio
)
pref_f = find_force * (
self.limit_pref_f + (self.start_pref_f - self.limit_pref_f) * lr_ratio
)
pref_v = find_virial * (
self.limit_pref_v + (self.start_pref_v - self.limit_pref_v) * lr_ratio
)
pref_ae = find_atom_ener * (
self.limit_pref_ae + (self.start_pref_ae - self.limit_pref_ae) * lr_ratio
)
pref_pf = find_atom_pref * (
self.limit_pref_pf + (self.start_pref_pf - self.limit_pref_pf) * lr_ratio
)

l2_loss = 0
more_loss = {}
if self.has_e:
l2_ener_loss = xp.mean(xp.square(energy - energy_hat))
l2_loss += atom_norm_ener * (pref_e * l2_ener_loss)
Fixed Show fixed Hide fixed
more_loss["l2_ener_loss"] = self.display_if_exist(l2_ener_loss, find_energy)
if self.has_f:
l2_force_loss = xp.mean(xp.square(diff_f))
l2_loss += pref_f * l2_force_loss
Fixed Show fixed Hide fixed
more_loss["l2_force_loss"] = self.display_if_exist(
l2_force_loss, find_force
)
if self.has_v:
virial_reshape = xp.reshape(virial, [-1])
virial_hat_reshape = xp.reshape(virial_hat, [-1])
l2_virial_loss = xp.mean(
xp.square(virial_hat_reshape - virial_reshape),
)
l2_loss += atom_norm * (pref_v * l2_virial_loss)
Fixed Show fixed Hide fixed
more_loss["l2_virial_loss"] = self.display_if_exist(
l2_virial_loss, find_virial
)
if self.has_ae:
atom_ener_reshape = xp.reshape(atom_ener, [-1])
atom_ener_hat_reshape = xp.reshape(atom_ener_hat, [-1])
l2_atom_ener_loss = xp.mean(
xp.square(atom_ener_hat_reshape - atom_ener_reshape),
)
l2_loss += pref_ae * l2_atom_ener_loss
Fixed Show fixed Hide fixed
more_loss["l2_atom_ener_loss"] = self.display_if_exist(
l2_atom_ener_loss, find_atom_ener
)
if self.has_pf:
atom_pref_reshape = xp.reshape(atom_pref, [-1])
l2_pref_force_loss = xp.mean(
xp.multiply(xp.square(diff_f), atom_pref_reshape),
)
l2_loss += pref_pf * l2_pref_force_loss
Fixed Show fixed Hide fixed
more_loss["l2_pref_force_loss"] = self.display_if_exist(
l2_pref_force_loss, find_atom_pref
)
if self.has_gf:
find_drdq = label_dict["find_drdq"]
drdq = label_dict["drdq"]
force_reshape_nframes = xp.reshape(force, [-1, natoms[0] * 3])
force_hat_reshape_nframes = xp.reshape(force_hat, [-1, natoms[0] * 3])
drdq_reshape = xp.reshape(
drdq, [-1, natoms[0] * 3, self.numb_generalized_coord]
)
gen_force_hat = xp.einsum(
"bij,bi->bj", drdq_reshape, force_hat_reshape_nframes
)
gen_force = xp.einsum("bij,bi->bj", drdq_reshape, force_reshape_nframes)
diff_gen_force = gen_force_hat - gen_force
l2_gen_force_loss = xp.mean(xp.square(diff_gen_force))
pref_gf = find_drdq * (
self.limit_pref_gff
njzjz marked this conversation as resolved.
Show resolved Hide resolved
+ (self.start_pref_gf - self.limit_pref_gf) * lr_ratio
)
l2_loss += pref_gf * l2_gen_force_loss
Fixed Show fixed Hide fixed
Fixed Show fixed Hide fixed
more_loss["l2_gen_force_loss"] = self.display_if_exist(
l2_gen_force_loss, find_drdq
Fixed Show fixed Hide fixed
)

self.l2_l = l2_loss
self.l2_more = more_loss
return l2_loss, more_loss

njzjz marked this conversation as resolved.
Show resolved Hide resolved
@property
def label_requirement(self) -> list[DataRequirementItem]:
"""Return data label requirements needed for this loss calculation."""
label_requirement = []
if self.has_e:
label_requirement.append(
DataRequirementItem(
"energy",
ndof=1,
atomic=False,
must=False,
high_prec=True,
)
)
if self.has_f:
label_requirement.append(
DataRequirementItem(
"force",
ndof=3,
atomic=True,
must=False,
high_prec=False,
)
)
if self.has_v:
label_requirement.append(
DataRequirementItem(
"virial",
ndof=9,
atomic=False,
must=False,
high_prec=False,
)
)
if self.has_ae:
label_requirement.append(
DataRequirementItem(
"atom_ener",
ndof=1,
atomic=True,
must=False,
high_prec=False,
)
)
if self.has_pf:
label_requirement.append(
DataRequirementItem(
"atom_pref",
ndof=1,
atomic=True,
must=False,
high_prec=False,
repeat=3,
)
)
if self.has_gf > 0:
label_requirement.append(
DataRequirementItem(
"drdq",
ndof=self.numb_generalized_coord * 3,
atomic=True,
must=False,
high_prec=False,
)
)
if self.enable_atom_ener_coeff:
label_requirement.append(
DataRequirementItem(
"atom_ener_coeff",
ndof=1,
atomic=True,
must=False,
high_prec=False,
default=1.0,
)
)
return label_requirement

def serialize(self) -> dict:
"""Serialize the loss module.

Returns
-------
dict
The serialized loss module
"""
return {
"@class": "EnergyLoss",
"@version": 1,
"starter_learning_rate": self.starter_learning_rate,
"start_pref_e": self.start_pref_e,
"limit_pref_e": self.limit_pref_e,
"start_pref_f": self.start_pref_f,
"limit_pref_f": self.limit_pref_f,
"start_pref_v": self.start_pref_v,
"limit_pref_v": self.limit_pref_v,
"start_pref_ae": self.start_pref_ae,
"limit_pref_ae": self.limit_pref_ae,
"start_pref_pf": self.start_pref_pf,
"limit_pref_pf": self.limit_pref_pf,
"relative_f": self.relative_f,
"enable_atom_ener_coeff": self.enable_atom_ener_coeff,
"start_pref_gf": self.start_pref_gf,
"limit_pref_gf": self.limit_pref_gf,
"numb_generalized_coord": self.numb_generalized_coord,
}

@classmethod
def deserialize(cls, data: dict) -> "Loss":
"""Deserialize the loss module.

Parameters
----------
data : dict
The serialized loss module

Returns
-------
Loss
The deserialized loss module
"""
data = data.copy()
check_version_compatibility(data.pop("@version"), 1, 1)
data.pop("@class")
return cls(**data)
Loading
Loading