Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix stride indexing bugs in reorg and reorg_gradient functions (CPU & CUDA) #3012

Merged
merged 6 commits into from
Sep 23, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
91 changes: 51 additions & 40 deletions dlib/cuda/cpu_dlib.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -2333,58 +2333,67 @@ namespace dlib

// ----------------------------------------------------------------------------------------

void reorg (
void reorg(
bool add_to,
tensor& dest,
const int row_stride,
const int col_stride,
const tensor& src
)
{
DLIB_CASSERT(is_same_object(dest, src)==false);
DLIB_CASSERT(src.nr() % row_stride == 0);
DLIB_CASSERT(src.nc() % col_stride == 0);
DLIB_CASSERT(dest.num_samples() == src.num_samples());
DLIB_CASSERT(dest.k() == src.k() * row_stride * col_stride);
DLIB_CASSERT(dest.nr() == src.nr() / row_stride);
DLIB_CASSERT(dest.nc() == src.nc() / col_stride);
DLIB_CASSERT(!is_same_object(dest, src), "Destination and source must be distinct objects.");
DLIB_CASSERT(src.nr() % row_stride == 0, "The number of rows in src must be divisible by row_stride.");
DLIB_CASSERT(src.nc() % col_stride == 0, "The number of columns in src must be divisible by col_stride.");
DLIB_CASSERT(dest.num_samples() == src.num_samples(), "The number of samples must match.");
DLIB_CASSERT(dest.k() == src.k() * row_stride * col_stride, "The number of channels must match.");
DLIB_CASSERT(dest.nr() == src.nr() / row_stride, "The number of rows must match.");
DLIB_CASSERT(dest.nc() == src.nc() / col_stride, "The number of columns must match.");

const float* s = src.host();
float* d = dest.host();

parallel_for(0, dest.num_samples(), [&](long n)
const size_t sk = src.k(), snr = src.nr(), snc = src.nc();
const size_t dk = dest.k(), dnr = dest.nr(), dnc = dest.nc(), dsize = dest.size();

dlib::parallel_for(0, dsize, [&](long i)
{
for (long k = 0; k < dest.k(); ++k)
{
for (long r = 0; r < dest.nr(); ++r)
{
for (long c = 0; c < dest.nc(); ++c)
{
const auto out_idx = tensor_index(dest, n, k, r, c);
const auto in_idx = tensor_index(src,
n,
k % src.k(),
r * row_stride + (k / src.k()) / row_stride,
c * col_stride + (k / src.k()) % col_stride);
d[out_idx] = s[in_idx];
}
}
}
const size_t out_plane_size = dnr * dnc;
const size_t out_sample_size = dk * out_plane_size;

const size_t n = i / out_sample_size;
const size_t out_idx = i % out_sample_size;
const size_t out_k = out_idx / out_plane_size;
const size_t out_rc = out_idx % out_plane_size;
const size_t out_r = out_rc / dnc;
const size_t out_c = out_rc % dnc;

const size_t in_k = out_k % sk;
const size_t in_r = out_r * row_stride + (out_k / sk) / col_stride;
const size_t in_c = out_c * col_stride + (out_k / sk) % col_stride;

const size_t in_idx = ((n * sk + in_k) * snr + in_r) * snc + in_c;

if (add_to) d[i] += s[in_idx];
else d[i] = s[in_idx];
});
}

void reorg_gradient (
void reorg_gradient(
bool add_to,
tensor& grad,
const int row_stride,
const int col_stride,
const tensor& gradient_input
)
{
DLIB_CASSERT(is_same_object(grad, gradient_input)==false);
DLIB_CASSERT(grad.nr() % row_stride == 0);
DLIB_CASSERT(grad.nc() % col_stride == 0);
DLIB_CASSERT(grad.num_samples() == gradient_input.num_samples());
DLIB_CASSERT(grad.k() == gradient_input.k() / row_stride / col_stride);
DLIB_CASSERT(grad.nr() == gradient_input.nr() * row_stride);
DLIB_CASSERT(grad.nc() == gradient_input.nc() * row_stride);
DLIB_CASSERT(!is_same_object(grad, gradient_input), "Grad and gradient_input must be distinct objects.");
DLIB_CASSERT(grad.nr() % row_stride == 0, "The number of rows in grad must be divisible by row_stride.");
DLIB_CASSERT(grad.nc() % col_stride == 0, "The number of columns in grad must be divisible by col_stride.");
DLIB_CASSERT(grad.num_samples() == gradient_input.num_samples(), "The number of samples in grad and gradient_input must match.");
DLIB_CASSERT(grad.k() == gradient_input.k() / row_stride / col_stride, "The number of channels in grad must be gradient_input.k() divided by row_stride and col_stride.");
DLIB_CASSERT(grad.nr() == gradient_input.nr() * row_stride, "The number of rows in grad must be gradient_input.nr() multiplied by row_stride.");
DLIB_CASSERT(grad.nc() == gradient_input.nc() * col_stride, "The number of columns in grad must be gradient_input.nc() multiplied by col_stride.");

const float* gi = gradient_input.host();
float* g = grad.host();

Expand All @@ -2396,13 +2405,15 @@ namespace dlib
{
for (long c = 0; c < gradient_input.nc(); ++c)
{
const auto in_idx = tensor_index(gradient_input, n, k, r, c);
const auto out_idx = tensor_index(grad,
n,
k % grad.k(),
r * row_stride + (k / grad.k()) / row_stride,
c * col_stride + (k / grad.k()) % col_stride);
g[out_idx] += gi[in_idx];
const auto in_idx = tensor_index(gradient_input, n, k, r, c);
const auto out_idx = tensor_index(grad,
n,
k % grad.k(),
r * row_stride + (k / grad.k()) / col_stride,
c * col_stride + (k / grad.k()) % col_stride);

if (add_to) g[out_idx] += gi[in_idx];
else g[out_idx] = gi[in_idx];
}
}
}
Expand Down
2 changes: 2 additions & 0 deletions dlib/cuda/cpu_dlib.h
Original file line number Diff line number Diff line change
Expand Up @@ -502,13 +502,15 @@ namespace dlib
// -----------------------------------------------------------------------------------

void reorg (
bool add_to,
tensor& dest,
const int row_stride,
const int col_stride,
const tensor& src
);

void reorg_gradient (
bool add_to,
tensor& grad,
const int row_stride,
const int col_stride,
Expand Down
87 changes: 46 additions & 41 deletions dlib/cuda/cuda_dlib.cu
Original file line number Diff line number Diff line change
Expand Up @@ -2001,86 +2001,91 @@ namespace dlib

__global__ void _cuda_reorg(size_t dsize, size_t dk, size_t dnr, size_t dnc, float* d,
size_t sk, size_t snr, int snc, const float* s,
const size_t row_stride, const size_t col_stride)
const size_t row_stride, const size_t col_stride, const bool add_to)
{
const auto out_plane_size = dnr * dnc;
const auto sample_size = dk * out_plane_size;
for(auto i : grid_stride_range(0, dsize))
const auto out_sample_size = dk * out_plane_size;
for (auto i : grid_stride_range(0, dsize))
{
const auto n = i / sample_size;
const auto idx = i % out_plane_size;
const auto out_k = (i / out_plane_size) % dk;
const auto out_r = idx / dnc;
const auto out_c = idx % dnc;
const auto n = i / out_sample_size;
const auto out_idx = i % out_sample_size;
const auto out_k = out_idx / out_plane_size;
const auto out_rc = out_idx % out_plane_size;
const auto out_r = out_rc / dnc;
const auto out_c = out_rc % dnc;

const auto in_k = out_k % sk;
const auto in_r = out_r * row_stride + (out_k / sk) / row_stride;
const auto in_r = out_r * row_stride + (out_k / sk) / col_stride;
const auto in_c = out_c * col_stride + (out_k / sk) % col_stride;

const auto in_idx = ((n * sk + in_k) * snr + in_r) * snc + in_c;
d[i] = s[in_idx];
if (add_to) d[i] += s[in_idx];
else d[i] = s[in_idx];
}
}

__global__ void _cuda_reorg_gradient(size_t ssize, size_t dk, size_t dnr, size_t dnc, float* d,
size_t sk, size_t snr, int snc, const float* s,
const size_t row_stride, const size_t col_stride)
size_t sk, size_t snr, int snc, const float* s, const size_t row_stride,
const size_t col_stride, const bool add_to
)
{
const auto in_plane_size = snr * snc;
const auto sample_size = sk * in_plane_size;
for(auto i : grid_stride_range(0, ssize))
{
const auto n = i / sample_size;
const auto idx = i % in_plane_size;
const auto in_k = (i / in_plane_size) % sk;
const auto in_r = idx / snc;
const auto in_c = idx % snc;
const auto n = i / (sk * snr * snc);
const auto sample_idx = i % (sk * snr * snc);
const auto in_k = (sample_idx / (snr * snc)) % sk;
const auto in_r = (sample_idx / snc) % snr;
const auto in_c = sample_idx % snc;

const auto out_k = in_k % dk;
const auto out_r = in_r * row_stride + (in_k / dk) / row_stride;
const auto out_r = in_r * row_stride + (in_k / dk) / col_stride;
const auto out_c = in_c * col_stride + (in_k / dk) % col_stride;

const auto out_idx = ((n * dk + out_k) * dnr + out_r) * dnc + out_c;
d[out_idx] += s[i];

if (add_to) d[out_idx] += s[i];
else d[out_idx] = s[i];
}
}

void reorg (
void reorg(
bool add_to,
tensor& dest,
const int row_stride,
const int col_stride,
const tensor& src
)
{
DLIB_CASSERT(is_same_object(dest, src)==false);
DLIB_CASSERT(src.nr() % row_stride == 0);
DLIB_CASSERT(src.nc() % col_stride == 0);
DLIB_CASSERT(dest.num_samples() == src.num_samples());
DLIB_CASSERT(dest.k() == src.k() * row_stride * col_stride);
DLIB_CASSERT(dest.nr() == src.nr() / row_stride);
DLIB_CASSERT(dest.nc() == src.nc() / col_stride);
DLIB_CASSERT(!is_same_object(dest, src), "Destination and source must be distinct objects.");
DLIB_CASSERT(src.nr() % row_stride == 0, "The number of rows in src must be divisible by row_stride.");
DLIB_CASSERT(src.nc() % col_stride == 0, "The number of columns in src must be divisible by col_stride.");
DLIB_CASSERT(dest.num_samples() == src.num_samples(), "The number of samples must match.");
DLIB_CASSERT(dest.k() == src.k() * row_stride * col_stride, "The number of channels must match.");
DLIB_CASSERT(dest.nr() == src.nr() / row_stride, "The number of rows must match.");
DLIB_CASSERT(dest.nc() == src.nc() / col_stride, "The number of columns must match.");

launch_kernel(_cuda_reorg, dest.size(), dest.k(), dest.nr(), dest.nc(), dest.device(),
src.k(), src.nr(), src.nc(), src.device(), row_stride, col_stride);
src.k(), src.nr(), src.nc(), src.device(), row_stride, col_stride, add_to);
}

void reorg_gradient (
void reorg_gradient(
bool add_to,
tensor& grad,
const int row_stride,
const int col_stride,
const tensor& gradient_input
)
{
DLIB_CASSERT(is_same_object(grad, gradient_input)==false);
DLIB_CASSERT(grad.nr() % row_stride == 0);
DLIB_CASSERT(grad.nc() % col_stride == 0);
DLIB_CASSERT(grad.num_samples() == gradient_input.num_samples());
DLIB_CASSERT(grad.k() == gradient_input.k() / row_stride / col_stride);
DLIB_CASSERT(grad.nr() == gradient_input.nr() * row_stride);
DLIB_CASSERT(grad.nc() == gradient_input.nc() * row_stride);
DLIB_CASSERT(!is_same_object(grad, gradient_input), "Grad and gradient_input must be distinct objects.");
DLIB_CASSERT(grad.nr() % row_stride == 0, "The number of rows in grad must be divisible by row_stride.");
DLIB_CASSERT(grad.nc() % col_stride == 0, "The number of columns in grad must be divisible by col_stride.");
DLIB_CASSERT(grad.num_samples() == gradient_input.num_samples(), "The number of samples in grad and gradient_input must match.");
DLIB_CASSERT(grad.k() == gradient_input.k() / row_stride / col_stride, "The number of channels in grad must be gradient_input.k() divided by row_stride and col_stride.");
DLIB_CASSERT(grad.nr() == gradient_input.nr() * row_stride, "The number of rows in grad must be gradient_input.nr() multiplied by row_stride.");
DLIB_CASSERT(grad.nc() == gradient_input.nc() * col_stride, "The number of columns in grad must be gradient_input.nc() multiplied by col_stride.");

launch_kernel(_cuda_reorg_gradient, gradient_input.size(), grad.k(), grad.nr(), grad.nc(), grad.device(),
gradient_input.k(), gradient_input.nr(), gradient_input.nc(), gradient_input.device(),
row_stride, col_stride);
gradient_input.k(), gradient_input.nr(), gradient_input.nc(), gradient_input.device(),
row_stride, col_stride, add_to);
}

// ----------------------------------------------------------------------------------------
Expand Down
2 changes: 2 additions & 0 deletions dlib/cuda/cuda_dlib.h
Original file line number Diff line number Diff line change
Expand Up @@ -546,13 +546,15 @@ namespace dlib
// ----------------------------------------------------------------------------------------

void reorg (
bool add_to,
tensor& dest,
const int row_stride,
const int col_stride,
const tensor& src
);

void reorg_gradient (
bool add_to,
tensor& grad,
const int row_stride,
const int col_stride,
Expand Down
10 changes: 6 additions & 4 deletions dlib/cuda/tensor_tools.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1219,30 +1219,32 @@ namespace dlib { namespace tt
// ------------------------------------------------------------------------------------

void reorg (
bool add_to,
tensor& dest,
const int row_stride,
const int col_stride,
const tensor& src
)
{
#ifdef DLIB_USE_CUDA
cuda::reorg(dest, row_stride, col_stride, src);
cuda::reorg(add_to, dest, row_stride, col_stride, src);
#else
cpu::reorg(dest, row_stride, col_stride, src);
cpu::reorg(add_to, dest, row_stride, col_stride, src);
#endif
}

void reorg_gradient (
bool add_to,
tensor& grad,
const int row_stride,
const int col_stride,
const tensor& gradient_input
)
{
#ifdef DLIB_USE_CUDA
cuda::reorg_gradient(grad, row_stride, col_stride, gradient_input);
cuda::reorg_gradient(add_to, grad, row_stride, col_stride, gradient_input);
#else
cpu::reorg_gradient(grad, row_stride, col_stride, gradient_input);
cpu::reorg_gradient(add_to, grad, row_stride, col_stride, gradient_input);
#endif
}

Expand Down
Loading
Loading