Skip to content

Commit

Permalink
Remove debug print statements from test_recombine.py
Browse files Browse the repository at this point in the history
Eliminated unnecessary debug print statements across multiple
tests to enhance code clarity and maintainability. All functional
asserts and calculations remain intact for validating recombine
function correctness.
  • Loading branch information
inakleinbottle committed Oct 20, 2024
1 parent 29efcf3 commit 27d2600
Showing 1 changed file with 0 additions and 10 deletions.
10 changes: 0 additions & 10 deletions tests/test_recombine.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,17 +16,14 @@ def no_points():
def test_recombine_1(dimension, no_points):
data = np.random.default_rng(12345).random(size=(no_points, dimension), dtype=np.float64)

print("Runnint recombine")
## test 1
selected_points, new_weights = recombine(data) ## degree = 1

print("computing errors")
## check mean preserved
old_average = np.sum(data, 0)
new_average = new_weights.dot(np.take(data, selected_points, 0))
normalised_error = norm(old_average - new_average) / (norm(old_average) + norm(new_average))

print("running asserts")
## report
assert len(selected_points) <= dimension + 1
assert normalised_error <= 1e-13
Expand All @@ -40,16 +37,13 @@ def test_recombine_2(dimension, no_points):
### the points are not spanning the full space and so the minimal set should have cardinality less than or equal rank + 1
matrix = rng.random(size=(dimension, dimension + 20))
new_data = data.dot(matrix)
print("Runnint recombine")
selected_points, new_weights = recombine(new_data) ## degree = 1

print("computing errors")
## check mean preserved
old_average = np.sum(data, 0)
new_average = new_weights.dot(np.take(data, selected_points, 0))
normalised_error = norm(old_average - new_average) / (norm(old_average) + norm(new_average))

print("running asserts")
## report
assert len(selected_points) <= dimension + 1
assert normalised_error <= 1e-12
Expand All @@ -63,10 +57,8 @@ def test_recombine_3():
no_points = 1000
data = rng.random(size=(no_points, dimension))

print("Runnint recombine")
selected_points, new_weights = recombine(data, degree=2)

print("computing errors")
old_average = np.sum(data, 0)
new_average = new_weights.dot(np.take(data, selected_points, 0))
normalised_error_in_mean = norm(old_average - new_average) / (norm(old_average) + norm(new_average))
Expand All @@ -75,7 +67,5 @@ def test_recombine_3():
old_cov = np.cov(data, rowvar=False, bias=True, aweights=np.full(1000, 1.))
normalised_error_in_cov = norm(old_cov - new_cov) / (norm(old_cov) + norm(new_cov))


print("running asserts")
assert normalised_error_in_mean <= 1e-13
assert normalised_error_in_cov <= 1e-13

0 comments on commit 27d2600

Please sign in to comment.