Skip to content

Commit

Permalink
feat: chain scrapping & detection pipeline
Browse files Browse the repository at this point in the history
  • Loading branch information
SaboniAmine committed Oct 5, 2024
1 parent 41198c6 commit 907bb73
Show file tree
Hide file tree
Showing 6 changed files with 133 additions and 145 deletions.
123 changes: 36 additions & 87 deletions climateguard/pipeline.py
Original file line number Diff line number Diff line change
@@ -1,97 +1,46 @@
from gdelt_scrapper import GDELTScrapper
from news_scrapper import NewsScraper
import asyncio
from pathlib import Path
import json
import multiprocessing
from functools import partial
from typing import Literal, List, Dict

from climateguard.scrapping.pipeline import ScrapFromGDelt
from climateguard.detect_claims import detect_claims
from climateguard.models import Article, Claims

class Pipeline:
def __init__(self):
self.gdelt_scraper = GDELTScrapper()
self.news_scraper = NewsScraper()

def run(self, keyword: str, years: list[int], output_dir: Path):
# Step 1: Find themes related to the keyword
themes = self.gdelt_scraper.find_themes_related_to_keyword(keyword)
print(f"Themes related to {keyword}: {themes}")

# Step 2: Find articles for these themes and years
articles_df = self.gdelt_scraper.find_articles(themes=themes, years=years)

# Step 3: Extract URLs from the DataFrame
urls = articles_df["url"].tolist()

# Save the list of URLs to a separate file
self._save_urls(urls, output_dir)

# Step 4: Scrape each URL using multiprocessing
scraped_articles, failed_urls = self._scrape_urls_parallel(urls)

# Step 5: Save results
self._save_results(scraped_articles, failed_urls, output_dir)

def _save_urls(self, urls: list, output_dir: Path):
output_dir.mkdir(parents=True, exist_ok=True)
urls_file = output_dir / 'all_urls.json'
with open(urls_file, 'w', encoding='utf-8') as f:
json.dump(urls, f, ensure_ascii=False, indent=4)
print(f"All URLs saved to {urls_file}")

def _scrape_urls_parallel(self, urls):
# Create a partial function with self.news_scraper
scrape_func = partial(self._scrape_single_url, news_scraper=self.news_scraper)
self.scrap_from_gdelt = ScrapFromGDelt()
self.data_dir = Path(__file__).parent / "data"

# Use all available cores
num_cores = multiprocessing.cpu_count()

# Create a multiprocessing pool
with multiprocessing.Pool(num_cores) as pool:
results = pool.map(scrape_func, urls)
def run(self, keyword: str, years: list[int], language: Literal["French", "English", "Latvian"]) -> List[Dict]:
scraped_articles_file = self.data_dir / 'scraped_articles.json'

# Process results
scraped_articles = []
failed_urls = []
for result in results:
if result['success']:
article = result['article']
scraped_articles.append(article)
print(f"Scraped: {article.title}")
print(f"Content length: {len(article.content)}")
print(f"Date: {article.date}")
print("---")
else:
failed_urls.append(result['url'])
print(f"Failed to scrape: {result['url']}")
print("---")

return scraped_articles, failed_urls

@staticmethod
def _scrape_single_url(url, news_scraper):
article = news_scraper.scrape_article(url)
if article:
return {'success': True, 'article': article}
if not scraped_articles_file.exists():
print("Scraped articles not found. Starting scraping process...")
articles_data = self.scrap_from_gdelt.run(keyword, years, self.data_dir)
else:
return {'success': False, 'url': url}

def _save_results(self, scraped_articles, failed_urls, output_dir):
output_dir.mkdir(parents=True, exist_ok=True)

# Save successfully scraped articles to JSON
output_file = output_dir / 'scraped_articles.json'
with open(output_file, 'w', encoding='utf-8') as f:
json.dump([article.dict() for article in scraped_articles], f, ensure_ascii=False, indent=4)

print(f"\nSuccessfully scraped articles saved to {output_file}")

# Save failed URLs to a separate file
failed_file = output_dir / 'failed_urls.json'
with open(failed_file, 'w', encoding='utf-8') as f:
json.dump(failed_urls, f, ensure_ascii=False, indent=4)

print(f"Failed URLs saved to {failed_file}")
print("Scraped articles found. Loading from file...")
with open(scraped_articles_file, 'r', encoding='utf-8') as f:
articles_data = json.load(f)

# Process articles and detect claims
results = []
for article_data in articles_data:
article = Article(**article_data)
claims, n_tokens = detect_claims(article, language)
results.append({
"article": article.dict(),
"claims": claims.dict(),
"n_tokens": n_tokens
})

print(f"Processed {len(results)} articles with claims")
return results

def main():
pipeline = Pipeline()
processed_articles = pipeline.run(keyword="CLIMATE", years=[2022, 2023, 2024], language="English")


if __name__ == "__main__":
pipeline = Pipeline()
output_dir = Path(__file__).parent.parent / "data"
pipeline.run(keyword="CLIMATE", years=[2022, 2023, 2024], output_dir=output_dir)
main()
File renamed without changes.
97 changes: 97 additions & 0 deletions climateguard/scrapping/pipeline.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
from climateguard.scrapping.gdelt_scrapper import GDELTScrapper
from climateguard.scrapping.news_scrapper import NewsScraper
from pathlib import Path
import json
import multiprocessing
from functools import partial

class ScrapFromGDelt:
def __init__(self):
self.gdelt_scraper = GDELTScrapper()
self.news_scraper = NewsScraper()

def run(self, keyword: str, years: list[int], output_dir: Path):
# Step 1: Find themes related to the keyword
themes = self.gdelt_scraper.find_themes_related_to_keyword(keyword)
print(f"Themes related to {keyword}: {themes}")

# Step 2: Find articles for these themes and years
articles_df = self.gdelt_scraper.find_articles(themes=themes, years=years)

# Step 3: Extract URLs from the DataFrame
urls = articles_df["url"].tolist()

# Save the list of URLs to a separate file
self._save_urls(urls, output_dir)

# Step 4: Scrape each URL using multiprocessing
scraped_articles, failed_urls = self._scrape_urls_parallel(urls)

# Step 5: Save results
self._save_results(scraped_articles, failed_urls, output_dir)

def _save_urls(self, urls: list, output_dir: Path):
output_dir.mkdir(parents=True, exist_ok=True)
urls_file = output_dir / 'all_urls.json'
with open(urls_file, 'w', encoding='utf-8') as f:
json.dump(urls, f, ensure_ascii=False, indent=4)
print(f"All URLs saved to {urls_file}")

def _scrape_urls_parallel(self, urls):
# Create a partial function with self.news_scraper
scrape_func = partial(self._scrape_single_url, news_scraper=self.news_scraper)

# Use all available cores
num_cores = multiprocessing.cpu_count()

# Create a multiprocessing pool
with multiprocessing.Pool(num_cores) as pool:
results = pool.map(scrape_func, urls)

# Process results
scraped_articles = []
failed_urls = []
for result in results:
if result['success']:
article = result['article']
scraped_articles.append(article)
print(f"Scraped: {article.title}")
print(f"Content length: {len(article.content)}")
print(f"Date: {article.date}")
print("---")
else:
failed_urls.append(result['url'])
print(f"Failed to scrape: {result['url']}")
print("---")

return scraped_articles, failed_urls

@staticmethod
def _scrape_single_url(url, news_scraper):
article = news_scraper.scrape_article(url)
if article:
return {'success': True, 'article': article}
else:
return {'success': False, 'url': url}

def _save_results(self, scraped_articles, failed_urls, output_dir):
output_dir.mkdir(parents=True, exist_ok=True)

# Save successfully scraped articles to JSON
output_file = output_dir / 'scraped_articles.json'
with open(output_file, 'w', encoding='utf-8') as f:
json.dump([article.dict() for article in scraped_articles], f, ensure_ascii=False, indent=4)

print(f"\nSuccessfully scraped articles saved to {output_file}")

# Save failed URLs to a separate file
failed_file = output_dir / 'failed_urls.json'
with open(failed_file, 'w', encoding='utf-8') as f:
json.dump(failed_urls, f, ensure_ascii=False, indent=4)

print(f"Failed URLs saved to {failed_file}")

if __name__ == "__main__":
pipeline = ScrapFromGDelt()
output_dir = Path(__file__).parent.parent / "data"
pipeline.run(keyword="CLIMATE", years=[2022, 2023, 2024], output_dir=output_dir)
File renamed without changes.
File renamed without changes.
58 changes: 0 additions & 58 deletions climateguard/test.py

This file was deleted.

0 comments on commit 907bb73

Please sign in to comment.