forked from cadCAD-org/cadCAD
-
Notifications
You must be signed in to change notification settings - Fork 127
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add switch for toggling deepcopy off (cadCAD-org#316)
* fix tests + rm simulations/ folder * add types.py * single run / multi mc is ok * fix for single run / single param * add support for single proc runs * add switch for using deepcopy + fix bug on additional_objs * bug fix * bug fix --------- Co-authored-by: Emanuel Lima <[email protected]>
- Loading branch information
1 parent
1b3241e
commit 0aa86be
Showing
6 changed files
with
286 additions
and
29 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,187 @@ | ||
from typing import Dict, List | ||
from cadCAD.engine import Executor, ExecutionContext, ExecutionMode | ||
from cadCAD.configuration import Experiment | ||
from cadCAD.configuration.utils import env_trigger, var_substep_trigger, config_sim, psub_list | ||
from cadCAD.types import * | ||
import pandas as pd # type: ignore | ||
import types | ||
import inspect | ||
import pytest | ||
|
||
def describe_or_return(v: object) -> object: | ||
""" | ||
Thanks @LinuxIsCool! | ||
""" | ||
if isinstance(v, types.FunctionType): | ||
return f'function: {v.__name__}' | ||
elif isinstance(v, types.LambdaType) and v.__name__ == '<lambda>': | ||
return f'lambda: {inspect.signature(v)}' | ||
else: | ||
return v | ||
|
||
|
||
def select_M_dict(M_dict: Dict[str, object], keys: set) -> Dict[str, object]: | ||
""" | ||
Thanks @LinuxIsCool! | ||
""" | ||
return {k: describe_or_return(v) for k, v in M_dict.items() if k in keys} | ||
|
||
|
||
def select_config_M_dict(configs: list, i: int, keys: set) -> Dict[str, object]: | ||
return select_M_dict(configs[i].sim_config['M'], keys) | ||
|
||
|
||
def drop_substeps(_df): | ||
first_ind = (_df.substep == 0) & (_df.timestep == 0) | ||
last_ind = _df.substep == max(_df.substep) | ||
inds_to_drop = first_ind | last_ind | ||
return _df.copy().loc[inds_to_drop].drop(columns=['substep']) | ||
|
||
|
||
def assign_params(_df: pd.DataFrame, configs) -> pd.DataFrame: | ||
""" | ||
Based on `cadCAD-tools` package codebase, by @danlessa | ||
""" | ||
M_dict = configs[0].sim_config['M'] | ||
params_set = set(M_dict.keys()) | ||
selected_params = params_set | ||
|
||
# Attribute parameters to each row | ||
# 1. Assign the parameter set from the first row first, so that | ||
# columns are created | ||
first_param_dict = select_config_M_dict(configs, 0, selected_params) | ||
|
||
# 2. Attribute parameter on an (simulation, subset, run) basis | ||
df = _df.assign(**first_param_dict).copy() | ||
for i, (_, subset_df) in enumerate(df.groupby(['simulation', 'subset', 'run'])): | ||
df.loc[subset_df.index] = subset_df.assign(**select_config_M_dict(configs, | ||
i, | ||
selected_params)) | ||
return df | ||
|
||
|
||
|
||
|
||
SWEEP_PARAMS: Dict[str, List] = { | ||
'alpha': [1], | ||
'beta': [lambda x: 2 * x, lambda x: x], | ||
'gamma': [3, 4], | ||
'omega': [7] | ||
} | ||
|
||
SINGLE_PARAMS: Dict[str, object] = { | ||
'alpha': 1, | ||
'beta': lambda x: x, | ||
'gamma': 3, | ||
'omega': 5 | ||
} | ||
|
||
|
||
def create_experiment(N_RUNS=2, N_TIMESTEPS=3, params: dict=SWEEP_PARAMS): | ||
psu_steps = ['m1', 'm2', 'm3'] | ||
system_substeps = len(psu_steps) | ||
var_timestep_trigger = var_substep_trigger([0, system_substeps]) | ||
env_timestep_trigger = env_trigger(system_substeps) | ||
env_process = {} | ||
|
||
|
||
# ['s1', 's2', 's3', 's4'] | ||
# Policies per Mechanism | ||
def gamma(params: Parameters, substep: Substep, history: StateHistory, state: State, **kwargs): | ||
return {'gamma': params['gamma']} | ||
|
||
|
||
def omega(params: Parameters, substep: Substep, history: StateHistory, state: State, **kwarg): | ||
return {'omega': params['omega']} | ||
|
||
|
||
# Internal States per Mechanism | ||
def alpha(params: Parameters, substep: Substep, history: StateHistory, state: State, _input: PolicyOutput, **kwargs): | ||
return 'alpha_var', params['alpha'] | ||
|
||
|
||
def beta(params: Parameters, substep: Substep, history: StateHistory, state: State, _input: PolicyOutput, **kwargs): | ||
return 'beta_var', params['beta'] | ||
|
||
def gamma_var(params: Parameters, substep: Substep, history: StateHistory, state: State, _input: PolicyOutput, **kwargs): | ||
return 'gamma_var', params['gamma'] | ||
|
||
def omega_var(params: Parameters, substep: Substep, history: StateHistory, state: State, _input: PolicyOutput, **kwargs): | ||
return 'omega_var', params['omega'] | ||
|
||
|
||
def policies(params: Parameters, substep: Substep, history: StateHistory, state: State, _input: PolicyOutput, **kwargs): | ||
return 'policies', _input | ||
|
||
|
||
def sweeped(params: Parameters, substep: Substep, history: StateHistory, state: State, _input: PolicyOutput, **kwargs): | ||
return 'sweeped', {'beta': params['beta'], 'gamma': params['gamma']} | ||
|
||
psu_block: dict = {k: {"policies": {}, "states": {}} for k in psu_steps} | ||
for m in psu_steps: | ||
psu_block[m]['policies']['gamma'] = gamma | ||
psu_block[m]['policies']['omega'] = omega | ||
psu_block[m]["states"]['alpha_var'] = alpha | ||
psu_block[m]["states"]['beta_var'] = beta | ||
psu_block[m]["states"]['gamma_var'] = gamma_var | ||
psu_block[m]["states"]['omega_var'] = omega_var | ||
psu_block[m]['states']['policies'] = policies | ||
psu_block[m]["states"]['sweeped'] = var_timestep_trigger(y='sweeped', f=sweeped) | ||
|
||
|
||
# Genesis States | ||
genesis_states = { | ||
'alpha_var': 0, | ||
'beta_var': 0, | ||
'gamma_var': 0, | ||
'omega_var': 0, | ||
'policies': {}, | ||
'sweeped': {} | ||
} | ||
|
||
# Environment Process | ||
env_process['sweeped'] = env_timestep_trigger(trigger_field='timestep', trigger_vals=[5], funct_list=[lambda _g, x: _g['beta']]) | ||
|
||
sim_config = config_sim( | ||
{ | ||
"N": N_RUNS, | ||
"T": range(N_TIMESTEPS), | ||
"M": params, # Optional | ||
} | ||
) | ||
|
||
# New Convention | ||
partial_state_update_blocks = psub_list(psu_block, psu_steps) | ||
|
||
exp = Experiment() | ||
exp.append_model( | ||
sim_configs=sim_config, | ||
initial_state=genesis_states, | ||
env_processes=env_process, | ||
partial_state_update_blocks=partial_state_update_blocks | ||
) | ||
return exp | ||
|
||
|
||
def test_deepcopy_off(): | ||
exp = create_experiment() | ||
mode = ExecutionMode().local_mode | ||
exec_context = ExecutionContext(mode, additional_objs={'deepcopy_off': True}) | ||
executor = Executor(exec_context=exec_context, configs=exp.configs) | ||
(records, tensor_field, _) = executor.execute() | ||
df = drop_substeps(assign_params(pd.DataFrame(records), exp.configs)) | ||
|
||
# XXX: parameters should always be of the same type. Else, the test will fail | ||
first_sim_config = exp.configs[0].sim_config['M'] | ||
|
||
|
||
for (i, row) in df.iterrows(): | ||
if row.timestep > 0: | ||
|
||
assert row['alpha_var'] == row['alpha'] | ||
assert type(row['alpha_var']) == type(first_sim_config['alpha']) | ||
assert row['gamma_var'] == row['gamma'] | ||
assert type(row['gamma_var']) == type(first_sim_config['gamma']) | ||
assert row['omega_var'] == row['omega'] | ||
assert type(row['omega_var']) == type(first_sim_config['omega']) | ||
|
Oops, something went wrong.