Skip to content

Commit

Permalink
from_parallel consistent with from_basis
Browse files Browse the repository at this point in the history
  • Loading branch information
eisenlohr authored and MarDiehl committed Sep 25, 2024
1 parent 55dd13c commit c388cab
Show file tree
Hide file tree
Showing 3 changed files with 28 additions and 10 deletions.
2 changes: 1 addition & 1 deletion python/damask/_crystal.py
Original file line number Diff line number Diff line change
Expand Up @@ -1241,4 +1241,4 @@ def relation_operations(self,
o_p = np.stack((o.to_frame(uvw=o_p[:,0] if o_l != 'hP' else util.Bravais_to_Miller(uvtw=o_p[:,0])),
o.to_frame(hkl=o_p[:,1] if o_l != 'hP' else util.Bravais_to_Miller(hkil=o_p[:,1]))),
axis=-2)
return (o_l,Rotation.from_parallel(a=m_p,b=o_p))
return (o_l,Rotation.from_parallel(a=m_p,b=o_p,active=True))
24 changes: 17 additions & 7 deletions python/damask/_rotation.py
Original file line number Diff line number Diff line change
Expand Up @@ -811,7 +811,7 @@ def as_homochoric(self) -> np.ndarray:
Returns
-------
h : numpy.ndarray, shape (...,3)
Homochoric vector (h_1, h_2, h_3) with ǀhǀ < (3/4*π)^(1/3).
Homochoric vector (h_1, h_2, h_3) with ǀhǀ < (3π/4)^(1/3).
Examples
--------
Expand All @@ -831,7 +831,7 @@ def as_cubochoric(self) -> np.ndarray:
Returns
-------
x : numpy.ndarray, shape (...,3)
Cubochoric vector (x_1, x_2, x_3) with max(x_i) < 1/2*π^(2/3).
Cubochoric vector (x_1, x_2, x_3) with max(x_i) < 1/2 π^(2/3).
Examples
--------
Expand Down Expand Up @@ -1062,7 +1062,8 @@ def from_matrix(R: np.ndarray,

@staticmethod
def from_parallel(a: np.ndarray,
b: np.ndarray ) -> 'Rotation':
b: np.ndarray,
active: bool = False ) -> 'Rotation':
"""
Initialize from pairs of two orthogonal basis vectors.
Expand All @@ -1072,11 +1073,20 @@ def from_parallel(a: np.ndarray,
Two three-dimensional vectors of first orthogonal basis.
b : numpy.ndarray, shape (...,2,3)
Corresponding three-dimensional vectors of second basis.
active : bool, optional
Consider rotations as active, i.e. return (B^-1⋅A) instead of (B⋅A^-1).
Defaults to False.
Returns
-------
new : damask.Rotation
Notes
-----
If rotations $A = [a_1,a_2,a_1 × a_2]^T$ and B = $[b_1,b_2,b_1 × b_2]^T$
are considered "active", the resulting rotation will be $B^{-1}⋅A$ instead
of the default result $B⋅A^{-1}$.
Examples
--------
>>> import damask
Expand All @@ -1095,10 +1105,10 @@ def from_parallel(a: np.ndarray,

am = np.stack([ a_[...,0,:],
a_[...,1,:],
np.cross(a_[...,0,:],a_[...,1,:]) ],axis=-1)
np.cross(a_[...,0,:],a_[...,1,:]) ],axis=-1 if active else -2)
bm = np.stack([ b_[...,0,:],
b_[...,1,:],
np.cross(b_[...,0,:],b_[...,1,:]) ],axis=-1)
np.cross(b_[...,0,:],b_[...,1,:]) ],axis=-1 if active else -2)

return Rotation.from_basis(am).misorientation(Rotation.from_basis(bm))

Expand Down Expand Up @@ -1156,7 +1166,7 @@ def from_homochoric(h: np.ndarray,
Parameters
----------
h : numpy.ndarray, shape (...,3)
Homochoric vector (h_1, h_2, h_3) with ǀhǀ < (3/4*π)^(1/3).
Homochoric vector (h_1, h_2, h_3) with ǀhǀ < (3π/4)^(1/3).
P : int ∈ {-1,1}, optional
Sign convention. Defaults to -1.
Expand Down Expand Up @@ -1186,7 +1196,7 @@ def from_cubochoric(x: np.ndarray,
Parameters
----------
x : numpy.ndarray, shape (...,3)
Cubochoric vector (x_1, x_2, x_3) with max(x_i) < 1/2*π^(2/3).
Cubochoric vector (x_1, x_2, x_3) with max(x_i) < 1/2 π^(2/3).
P : int ∈ {-1,1}, optional
Sign convention. Defaults to -1.
Expand Down
12 changes: 10 additions & 2 deletions python/tests/test_Rotation.py
Original file line number Diff line number Diff line change
Expand Up @@ -789,8 +789,16 @@ def test_matrix(self,multidim_rotations,normalize):
def test_parallel(self,multidim_rotations):
a = np.array([[1.42,0.0,0.0],
[0.0,0.3,0.0]])
assert Rotation.from_parallel(a,multidim_rotations[...,np.newaxis]@a).allclose( multidim_rotations)
assert Rotation.from_parallel(multidim_rotations[...,np.newaxis]@a,a).allclose(~multidim_rotations)
b = ~multidim_rotations[...,np.newaxis]@a # actively rotate a axes as new b axes
assert Rotation.from_parallel(a,b).allclose( multidim_rotations)
assert Rotation.from_parallel(b,a).allclose(~multidim_rotations)


def test_basis_parallel_consistency(self,multidim_rotations):
M = multidim_rotations.as_matrix()
assert Rotation.from_basis(M).allclose(
Rotation.from_parallel(np.broadcast_to(np.identity(3),M.shape)[...,:2,:],
M[...,:2,:]))


@pytest.mark.parametrize('normalize',[True,False])
Expand Down

0 comments on commit c388cab

Please sign in to comment.