-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 00b86e8
Showing
12 changed files
with
1,363 additions
and
0 deletions.
There are no files selected for viewing
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
*.pptx |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,197 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"deletable": true, | ||
"editable": true | ||
}, | ||
"source": [ | ||
"# Wine Quality Dataset using Linear Regression\n", | ||
"\n", | ||
"###### The dataset included is related to red vinho verde wine samples, from the north of Portugal. The goal is to model wine quality based on physicochemical tests\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"import warnings\n", | ||
"# conventional way to import pandas \n", | ||
"import pandas as pd\n", | ||
"from sklearn.linear_model import LinearRegression\n", | ||
"from sklearn.model_selection import train_test_split\n", | ||
"from sklearn.metrics import accuracy_score\n", | ||
"\n", | ||
"warnings.filterwarnings(action=\"ignore\", module=\"scipy\", message=\"^internal gelsd\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### Load the dataset" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"wine = pd.read_csv('winequality-red.csv', delimiter=';')\n", | ||
"\n", | ||
"# display the first 10 rows of the dataset\n", | ||
"wine.head(10)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## What are the features of this dataset and what value are we predicting?\n", | ||
"##### In otherwords, what is the X of this dataset and y of the dataset" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"y = wine['quality']\n", | ||
"x = wine.drop('quality', axis=1)\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### Display the features" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"x.head()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Split the dataset\n", | ||
"#### Ideally we are supposed to split the data into the training, testing and validation sets but for this tutorial we shall limit ourselves to the training and test data set" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"x_train, x_test, y_train, y_test = train_test_split(x,y)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Training our model\n", | ||
"```python\n", | ||
"class sklearn.linear_model.LinearRegression(fit_intercept=True, normalize=False, copy_X=True, n_jobs=1)\n", | ||
"```" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"linearRegressor = LinearRegression()\n", | ||
"linearRegressor.fit(x_train, y_train)\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# predict the quality of the wine in the test split\n", | ||
"y_predict = linearRegressor.predict(x_test)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Determining how our model has performed\n", | ||
"```python\n", | ||
"accuracy_score(y_true, y_pred, normalize=True, sample_weight=None)\n", | ||
"```" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"accuracy_score(y_test.values, y_predict)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 2", | ||
"language": "python", | ||
"name": "python2" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 2 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython2", | ||
"version": "2.7.10" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
Oops, something went wrong.