-
Notifications
You must be signed in to change notification settings - Fork 32
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
f8b1b08
commit 8087651
Showing
1 changed file
with
1 addition
and
40 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -43,47 +43,8 @@ pip install pyDRTtools | |
``` | ||
**How to cite this work?** | ||
|
||
|
||
[1] Wan, T. H., Saccoccio, M., Chen, C., & Ciucci, F. (2015). Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRTtools. Electrochimica Acta, 184, 483-499.* | ||
|
||
Link: https://doi.org/10.1016/j.electacta.2015.09.097 | ||
|
||
if you want to add more details about standard regularization methods for computing the regularization parameter used in ridge regression, you should also cite the following references: | ||
|
||
[2] A. Maradesa, B. Py, T.H. Wan, M.B. Effat, F. Ciucci, Selecting the Regularization Parameter in the Distribution of Relaxation Times, Journal of the Electrochemical Society, 170 (2023) 030502. | ||
|
||
Link: https://doi.org/10.1149/1945-7111/acbca4 | ||
|
||
if you are presenting the *Bayesian credible intervals* generated by the pyDRTtools in any of your academic works, you should cite the following references also: | ||
|
||
[3] Ciucci, F., & Chen, C. (2015). Analysis of electrochemical impedance spectroscopy data using the distribution of relaxation times: A Bayesian and hierarchical Bayesian approach. Electrochimica Acta, 167, 439-454. | ||
|
||
Link: https://doi.org/10.1016/j.electacta.2015.03.123 | ||
|
||
[4] Effat, M. B., & Ciucci, F. (2017). Bayesian and hierarchical Bayesian based regularization for deconvolving the distribution of relaxation times from electrochemical impedance spectroscopy data. Electrochimica Acta, 247, 1117-1129. | ||
|
||
Link: https://doi.org/10.1016/j.electacta.2017.07.050 | ||
|
||
if you are using the pyDRTtools to compute the *Hilbert Transform*, you should cite: | ||
|
||
[5] Liu, J., Wan, T. H., & Ciucci, F. (2020).A Bayesian view on the Hilbert transform and the Kramers-Kronig transform of electrochemical impedance data: Probabilistic estimates and quality scores. Electrochimica Acta, 357, 136864. | ||
|
||
Link: https://doi.org/10.1016/j.electacta.2020.136864 | ||
Just write to [email protected] or [email protected] | ||
|
||
**How to get support?** | ||
|
||
Just write to [email protected] or [email protected] | ||
|
||
# References: | ||
1. Ciucci, F. (2020). The Gaussian process Hilbert transform (GP-HT): Testing the Consistency of electrochemical impedance spectroscopy data. Journal of The Electrochemical Society, 167, 12, 126503. [https://doi.org/10.1149/1945-7111/aba937](https://doi.org/10.1149/1945-7111/aba937) | ||
2. Liu, J., Wan, T. H., & Ciucci, F. (2020).A Bayesian view on the Hilbert transform and the Kramers-Kronig transform of electrochemical impedance data: Probabilistic estimates and quality scores. Electrochimica Acta, 357, 136864. [https://doi.org/10.1016/j.electacta.2020.136864](https://doi.org/10.1016/j.electacta.2020.136864) | ||
3. Ciucci, F. (2019). Modeling electrochemical impedance spectroscopy. Current Opinion in Electrochemistry, 13, 132-139. [doi.org/10.1016/j.coelec.2018.12.003](https://doi.org/10.1016/j.coelec.2018.12.003) | ||
4. Saccoccio, M., Wan, T. H., Chen, C., & Ciucci, F. (2014). Optimal regularization in distribution of relaxation times applied to electrochemical impedance spectroscopy: ridge and lasso regression methods-a theoretical and experimental study. Electrochimica Acta, 147, 470-482. [doi.org/10.1016/j.electacta.2014.09.058](https://doi.org/10.1016/j.electacta.2014.09.058) | ||
5. Wan, T. H., Saccoccio, M., Chen, C., & Ciucci, F. (2015). Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRTtools. Electrochimica Acta, 184, 483-499. [doi.org/10.1016/j.electacta.2015.09.097](https://doi.org/10.1016/j.electacta.2015.09.097) | ||
6. Ciucci, F., & Chen, C. (2015). Analysis of electrochemical impedance spectroscopy data using the distribution of relaxation times: a Bayesian and hierarchical Bayesian approach. Electrochimica Acta, 167, 439-454. [doi.org/10.1016/j.electacta.2015.03.123](https://doi.org/10.1016/j.electacta.2015.03.123) | ||
7. Effat, M. B., & Ciucci, F. (2017). Bayesian and hierarchical Bayesian based regularization for deconvolving the distribution of relaxation times from electrochemical impedance spectroscopy data. Electrochimica Acta, 247, 1117-1129. [doi.org/10.1016/j.electacta.2017.07.050](https://doi.org/10.1016/j.electacta.2017.07.050) | ||
8. Liu, J., & Ciucci, F. (2019). The Gaussian process distribution of relaxation times: a machine learning tool for the analysis and prediction of electrochemical impedance spectroscopy data. Electrochimica Acta, 135316. [doi.org/10.1016/j.electacta.2019.135316](https://doi.org/10.1016/j.electacta.2019.135316) | ||
9. Liu, J., & Ciucci, F. (2020). The deep-prior distribution of relaxation times. Journal of The Electrochemical Society, 167(2), 026506. [10.1149/1945-7111/ab631a](https://iopscience.iop.org/article/10.1149/1945-7111/ab631a/meta) | ||
10. A. Maradesa, B. Py, T.H. Wan, M.B. Effat, F. Ciucci, Selecting the Regularization Parameter in the Distribution of Relaxation Times, Journal of the Electrochemical Society, 170 (2023) 030502. | ||
Link: https://doi.org/10.1149/1945-7111/acbca4 | ||
|