-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit d8993f6
Showing
10 changed files
with
2,285 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,156 @@ | ||
### CUSTOM | ||
.vscode/ | ||
### END CUSTOM | ||
|
||
# Byte-compiled / optimized / DLL files | ||
__pycache__/ | ||
*.py[cod] | ||
*$py.class | ||
|
||
# C extensions | ||
*.so | ||
|
||
# Distribution / packaging | ||
.Python | ||
build/ | ||
develop-eggs/ | ||
dist/ | ||
downloads/ | ||
eggs/ | ||
.eggs/ | ||
lib/ | ||
lib64/ | ||
parts/ | ||
sdist/ | ||
var/ | ||
wheels/ | ||
share/python-wheels/ | ||
*.egg-info/ | ||
.installed.cfg | ||
*.egg | ||
MANIFEST | ||
|
||
# PyInstaller | ||
# Usually these files are written by a python script from a template | ||
# before PyInstaller builds the exe, so as to inject date/other infos into it. | ||
*.manifest | ||
*.spec | ||
|
||
# Installer logs | ||
pip-log.txt | ||
pip-delete-this-directory.txt | ||
|
||
# Unit test / coverage reports | ||
htmlcov/ | ||
.tox/ | ||
.nox/ | ||
.coverage | ||
.coverage.* | ||
.cache | ||
nosetests.xml | ||
coverage.xml | ||
*.cover | ||
*.py,cover | ||
.hypothesis/ | ||
.pytest_cache/ | ||
cover/ | ||
|
||
# Translations | ||
*.mo | ||
*.pot | ||
|
||
# Django stuff: | ||
*.log | ||
local_settings.py | ||
db.sqlite3 | ||
db.sqlite3-journal | ||
|
||
# Flask stuff: | ||
instance/ | ||
.webassets-cache | ||
|
||
# Scrapy stuff: | ||
.scrapy | ||
|
||
# Sphinx documentation | ||
docs/_build/ | ||
|
||
# PyBuilder | ||
.pybuilder/ | ||
target/ | ||
|
||
# Jupyter Notebook | ||
.ipynb_checkpoints | ||
|
||
# IPython | ||
profile_default/ | ||
ipython_config.py | ||
|
||
# pyenv | ||
# For a library or package, you might want to ignore these files since the code is | ||
# intended to run in multiple environments; otherwise, check them in: | ||
# .python-version | ||
|
||
# pipenv | ||
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. | ||
# However, in case of collaboration, if having platform-specific dependencies or dependencies | ||
# having no cross-platform support, pipenv may install dependencies that don't work, or not | ||
# install all needed dependencies. | ||
#Pipfile.lock | ||
|
||
# poetry | ||
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control. | ||
# This is especially recommended for binary packages to ensure reproducibility, and is more | ||
# commonly ignored for libraries. | ||
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control | ||
#poetry.lock | ||
|
||
# PEP 582; used by e.g. github.com/David-OConnor/pyflow | ||
__pypackages__/ | ||
|
||
# Celery stuff | ||
celerybeat-schedule | ||
celerybeat.pid | ||
|
||
# SageMath parsed files | ||
*.sage.py | ||
|
||
# Environments | ||
.env | ||
.venv | ||
env/ | ||
venv/ | ||
ENV/ | ||
env.bak/ | ||
venv.bak/ | ||
|
||
# Spyder project settings | ||
.spyderproject | ||
.spyproject | ||
|
||
# Rope project settings | ||
.ropeproject | ||
|
||
# mkdocs documentation | ||
/site | ||
|
||
# mypy | ||
.mypy_cache/ | ||
.dmypy.json | ||
dmypy.json | ||
|
||
# Pyre type checker | ||
.pyre/ | ||
|
||
# pytype static type analyzer | ||
.pytype/ | ||
|
||
# Cython debug symbols | ||
cython_debug/ | ||
|
||
# PyCharm | ||
# JetBrains specific template is maintainted in a separate JetBrains.gitignore that can | ||
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore | ||
# and can be added to the global gitignore or merged into this file. For a more nuclear | ||
# option (not recommended) you can uncomment the following to ignore the entire idea folder. | ||
#.idea/ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,200 @@ | ||
"""Convex body chasing code.""" | ||
from __future__ import annotations | ||
|
||
import cvxpy as cp | ||
import numpy as np | ||
from tqdm.auto import tqdm | ||
|
||
rng = np.random.default_rng() | ||
|
||
|
||
def cp_triangle_norm_sq(x: cp.Expression) -> cp.Expression: | ||
return cp.norm(cp.upper_tri(x), 2)**2 + cp.norm(cp.diag(x), 2)**2 | ||
|
||
|
||
class CBCProjection: | ||
"""Finds the set of X that is consistent with the observed data. | ||
""" | ||
def __init__(self, eta: float, n: int, T: int, n_samples: int, | ||
alpha: float, v: np.ndarray, X_init: np.ndarray | None = None, | ||
X_true: np.ndarray | None = None): | ||
""" | ||
Args | ||
- eta: float, noise bound | ||
- n: int, # of buses | ||
- T: int, maximum # of time steps | ||
- n_samples: int, # of observations to use for defining the convex set | ||
- alpha: float, weight on slack variable | ||
- v: np.array, shape [n], initial squared voltage magnitudes | ||
- X_init: np.array, initial guess for X matrix, must be PSD and | ||
entry-wise >= 0 | ||
- if None, we use X_init = np.eye(n) | ||
- X_true: np.array, true X matrix, optional | ||
""" | ||
self.eta = eta | ||
self.n = n | ||
self.n_samples = n_samples | ||
self.alpha = alpha | ||
self.X_true = X_true | ||
|
||
# history | ||
self.delta_vs = np.zeros([n, T+1]) | ||
self.v_prev = v | ||
self.us = np.zeros([n, T]) | ||
self.t = 0 | ||
|
||
if X_init is None: | ||
X_init = np.eye(n) # models a 1-layer tree graph | ||
self.X_cache = X_init | ||
self.is_cached = True | ||
self.lazy_buffer = [] | ||
self.prob = None | ||
|
||
# define optimization variables | ||
self.var_X = cp.Variable([n, n], PSD=True) | ||
self.var_slack = cp.Variable(nonneg=True) | ||
|
||
def add_obs(self, v: np.ndarray, u: np.ndarray) -> None: | ||
assert v.shape == (self.n,) | ||
assert u.shape == (self.n,) | ||
self.us[:, self.t] = u | ||
self.delta_vs[:, self.t] = v - self.v_prev | ||
self.t += 1 | ||
self.v_prev = v | ||
self.is_cached = False | ||
|
||
def select(self) -> np.ndarray: | ||
""" | ||
When select() is called, we have seen self.t observations. | ||
""" | ||
if self.is_cached: | ||
return self.X_cache | ||
|
||
t = self.t | ||
assert t >= 1 | ||
|
||
# be lazy if self.X_cache already satisfies the newest obs. | ||
est_noise = self.delta_vs[:, t-1] - self.X_cache @ self.us[:, t-1] | ||
tqdm.write(f'est_noise: {np.max(np.abs(est_noise)):.3f}') | ||
if np.max(np.abs(est_noise)) <= self.eta: | ||
# buf = self.eta - np.max(np.abs(est_noise)) | ||
# self.lazy_buffer.append(buf) | ||
# tqdm.write('being lazy') | ||
self.is_cached = True | ||
return self.X_cache | ||
|
||
tqdm.write('not lazy') | ||
|
||
n = self.n | ||
ub = self.eta # * np.ones([n, 1]) | ||
lb = -ub | ||
|
||
# optimization variables | ||
X = self.var_X | ||
slack = self.var_slack | ||
|
||
# import pdb | ||
# pdb.set_trace() | ||
|
||
# when t < self.n_samples, create a brand-new cp.Problem | ||
if t < self.n_samples: | ||
us = self.us[:, :t] | ||
delta_vs = self.delta_vs[:, :t] | ||
|
||
diffs = delta_vs - X @ us | ||
# constrs = [X >= 0, lb + slack <= diffs, diffs <= ub - slack] | ||
constrs = [X >= 0, lb <= diffs, diffs <= ub] | ||
|
||
obj = cp.Minimize(cp.norm(X - self.X_cache, 'fro')) | ||
# cp_triangle_norm_sq(X - self.X_cache) | ||
# - self.alpha * slack) | ||
prob = cp.Problem(objective=obj, constraints=constrs) | ||
prob.solve(verbose=True) | ||
|
||
# when t >= self.n_samples, compile a fixed-size optimization problem | ||
else: | ||
if self.prob is None: | ||
Xprev = cp.Parameter([n, n], PSD=True, name='Xprev') | ||
us = cp.Parameter([n, self.n_samples], name='us') | ||
delta_vs = cp.Parameter([n, self.n_samples], name='delta_vs') | ||
|
||
diffs = delta_vs - X @ us | ||
constrs = [X >= 0, lb + slack <= diffs, diffs <= ub - slack] | ||
|
||
obj = cp.Minimize(cp_triangle_norm_sq(X-Xprev) | ||
- self.alpha * slack) | ||
self.prob = cp.Problem(objective=obj, constraints=constrs) | ||
|
||
# if CBC problem is DPP, then it can be compiled for speedup | ||
# - see https://www.cvxpy.org/tutorial/advanced/index.html#disciplined-parametrized-programming # noqa | ||
tqdm.write(f'CBC prob is DPP?: {self.prob.is_dcp(dpp=True)}') | ||
|
||
self.param_Xprev = Xprev | ||
self.param_us = us | ||
self.param_delta_vs = delta_vs | ||
|
||
prob = self.prob | ||
|
||
# perform random sampling | ||
# - use the most recent k (<=5) time steps | ||
# - then sample additional previous time steps for 20 total | ||
k = min(self.n_samples, 5) | ||
ts = np.concatenate([ | ||
np.arange(t-k, t), | ||
rng.choice(t-k, size=self.n_samples-k, replace=False)]) | ||
self.param_us.value = self.us[:, ts] | ||
self.param_delta_vs.value = self.delta_vs[:, ts] | ||
|
||
self.param_Xprev.value = self.X_cache | ||
prob.solve(warm_start=True) | ||
|
||
if prob.status != 'optimal': | ||
tqdm.write(f'CBC prob.status = {prob.status}') | ||
if prob.status == 'infeasible': | ||
import pdb | ||
pdb.set_trace() | ||
self.X_cache = np.array(X.value) # make a copy | ||
|
||
if np.any(self.X_cache < 0): | ||
tqdm.write(f'optimal X has neg values. min={np.min(self.X_cache)}') | ||
tqdm.write('- applying ReLu') | ||
self.X_cache = np.maximum(0, self.X_cache) | ||
|
||
self.is_cached = True | ||
return self.X_cache | ||
|
||
# TODO: calculate Steiner point? | ||
# if self.t > n + 1: | ||
# steiner_point = psd_steiner_point(2, X, constraints) | ||
|
||
|
||
def psd_steiner_point(num_samples, X, constraints) -> np.ndarray: | ||
""" | ||
Args | ||
- num_samples: int, number of samples to use for calculating Steiner point | ||
- X: cp.Variable, shape [n, n] | ||
- constraints: list, cvxpy constraints | ||
""" | ||
n = X.shape[0] | ||
|
||
S = 0 | ||
for i in range(num_samples): | ||
theta = rng.random(X.shape) | ||
theta = theta @ theta.T + 1e-7 * np.eye(n) # random strictly PD matrix | ||
theta /= np.linalg.norm(theta, 'fro') # unit norm | ||
|
||
objective = cp.Maximize(cp.trace(theta @ X)) | ||
prob = cp.Problem(objective=objective, constraints=constraints) | ||
prob.solve() | ||
assert prob.status == 'optimal' | ||
|
||
p_i = prob.value | ||
S += p_i * theta | ||
|
||
d = n + n*(n-1) // 2 | ||
S = S / num_samples * d | ||
|
||
# check to make sure there is no constraint violation | ||
X.value = S | ||
for constr in constraints: | ||
constr.violation() |
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Oops, something went wrong.