-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
845403c
commit 8647062
Showing
7 changed files
with
127 additions
and
89 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
"""Example train loop for Population-Based Training.""" | ||
|
||
# These imports are not expected to work as-is. | ||
# This is just meant to show how pbt might look in a train loop. | ||
import models | ||
import optim | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
|
||
from args import TrainArgParser | ||
from data_loader import DataLoader | ||
from evaluator import ModelEvaluator | ||
from pbt.client import PBTClient | ||
from saver import ModelSaver | ||
|
||
|
||
def train(args): | ||
|
||
if args.ckpt_path: | ||
model, ckpt_info = ModelSaver.load_model(args.ckpt_path, args.gpu_ids) | ||
args.start_epoch = ckpt_info['epoch'] + 1 | ||
else: | ||
model_fn = models.__dict__[args.model] | ||
model = model_fn(**vars(args)) | ||
model = nn.DataParallel(model, args.gpu_ids) | ||
model = model.to(args.device) | ||
model.train() | ||
|
||
# Set up population-based training client | ||
pbt_client = PBTClient(args.pbt_server_url, args.pbt_server_port, args.pbt_server_key, args.pbt_config_path) | ||
|
||
# Get optimizer and scheduler | ||
parameters = model.module.parameters() | ||
optimizer = optim.get_optimizer(parameters, args, pbt_client) | ||
ModelSaver.load_optimizer(args.ckpt_path, args.gpu_ids, optimizer) | ||
|
||
# Get logger, evaluator, saver | ||
train_loader = DataLoader(args, 'train', is_training_set=True) | ||
eval_loaders = [DataLoader(args, 'valid', is_training_set=False)] | ||
evaluator = ModelEvaluator(eval_loaders, args.epochs_per_eval, | ||
args.max_eval, args.num_visuals, use_ten_crop=args.use_ten_crop) | ||
saver = ModelSaver(**vars(args)) | ||
|
||
for _ in range(args.num_epochs): | ||
optim.update_hyperparameters(model.module, optimizer, pbt_client.hyperparameters()) | ||
|
||
for inputs, targets in train_loader: | ||
with torch.set_grad_enabled(True): | ||
logits = model.forward(inputs.to(args.device)) | ||
loss = F.binary_cross_entropy_with_logits(logits, targets.to(args.device)) | ||
|
||
optimizer.zero_grad() | ||
loss.backward() | ||
optimizer.step() | ||
|
||
metrics = evaluator.evaluate(model, args.device) | ||
metric_val = metrics.get(args.metric_name, None) | ||
ckpt_path = saver.save(model, args.model, optimizer, args.device, metric_val) | ||
|
||
pbt_client.save(ckpt_path, metric_val) | ||
if pbt_client.should_exploit(): | ||
# Exploit | ||
pbt_client.exploit() | ||
|
||
# Load model and optimizer parameters from exploited network | ||
model, ckpt_info = ModelSaver.load_model(pbt_client.parameters_path(), args.gpu_ids) | ||
model = model.to(args.device) | ||
model.train() | ||
ModelSaver.load_optimizer(pbt_client.parameters_path(), args.gpu_ids, optimizer) | ||
|
||
# Explore | ||
pbt_client.explore() | ||
|
||
|
||
if __name__ == '__main__': | ||
parser = TrainArgParser() | ||
train(parser.parse_args()) |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file was deleted.
Oops, something went wrong.