msbd5013 group project repository
- data
Contains both format1 & format2 data from dropbox.
- analysis
Historical data analysis should be doing in this folder.
- model
Model building should be done in this folder.
- submissions
All submitted history project result archieve.
- others
Other support and helpful files or pages should be placed here.
- backTest.py
Enterance for porgramming running.
(Data file directory have already be setted as './data/')
- backTest.ipynb
backTest in jupyter-notebook format.
(Also contains some debug code for strategy.)
- strategy.py
Strategy code.
- auxiliary.py
Support functions for stategy.
-
about time series analysis : https://www.cnblogs.com/foley/p/5582358.html
-
some source code about strategy and model: https://www.joinquant.com
-
others/Analysis of Financial Time Series.pdf
-
others/Time series prediction using dynamic Bayesian network.pdf
-
Strategy
1.1 完善Cash_balance监控,要分清long,short时候对position的影响及cash的影响,保证不被平仓。
1.2 急涨急跌的应急处理。细节完善
1.3 联系TA关于清仓后,cash高于10000后,应该依然可以做交易的问题
-
Model
2.1 基于Bayesian Network的初步建模。
输入(t-1)时刻四个货币的价格, 输出为(t))时刻四种货币价格或者走势的预测。
-
Statistics & Analysis
3.1 多个货币之间的走势联系和影响,分析及利用。
合适的预测粒度(多少小时、或者天),以支持模型训练及优化
走势“领头”数字货币,支持策略方面实时计算决策。
3.2 交易量变化分析 - volume & price 走势关联分析
3.3 急涨急跌后的走势分析,辅助决策。
-
Arragement
Strategy - ZHANG Xichen
S & A - GAO Han
Model - WANG Shen, LING Liyang (coding support)
-
Deadline
2018/10/18 (Week.3)
-
Lask week rank: No.1
-
Model
2.1 Linear Regression.
model/model_linear_regression.ipynb
Y = (W.T)*X, where X is the data at time (T-n) of all 4 assests, Y is the predict assest price at time T.
2.2 Logistic Regression.
modify based on linear regression model
-
Strategy
based on model, if the predict is trustable. trade.
-
Arragement
-
Linear Regression parameter extend to (T-1), (T-2) ... (T-n) - ZHANG Xichen
-
Logistic Regression Modification. - GAO Han
-
Linear Regression parameter extend to volume. - LING Liyang
-
Textbook method attempt. - WANG Shen
-
-
DDL
2018/11/01 (Week.5)