Skip to content
/ V1T Public

Code for "V1T: Large-scale mouse V1 response prediction using a Vision Transformer"

License

Notifications You must be signed in to change notification settings

bryanlimy/V1T

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

V1T: Large-scale mouse V1 response prediction using a Vision Transformer

Code for TMLR2023 paper "V1T: Large-scale mouse V1 response prediction using a Vision Transformer".

Authors: Bryan M. Li, Isabel M. Cornacchia, Nathalie L. Rochefort, Arno Onken

@article{
  li2023vt,
  title={V1T: large-scale mouse V1 response prediction using a Vision Transformer},
  author={Bryan M. Li and Isabel Maria Cornacchia and Nathalie Rochefort and Arno Onken},
  journal={Transactions on Machine Learning Research},
  issn={2835-8856},
  year={2023},
  url={https://openreview.net/forum?id=qHZs2p4ZD4},
  note={}
}

Acknowledgement

We sincerely thank Willeke et al. for organizing the Sensorium challenge and, along with Franke et al., for making their high-quality large-scale mouse V1 recordings publicly available. This codebase is inspired by sinzlab/sensorium, sinzlab/neuralpredictors and sinzlab/nnfabrik.

File structure

The codebase repository has the following structure. Check .gitignore for the ignored files.

sensorium2022/
  data/
    sensorium/
      static21067-10-18-GrayImageNet-94c6ff995dac583098847cfecd43e7b6.zip
      ...
    franke2022/
      static25311-4-6-ColorImageNet-104e446ed0128d89c639eef0abe4655b.zip
      ...
    README.md
  misc/
  src/
    v1t/
      ...
  .gitignore
  README.md
  setup.sh
  demo.ipynb
  submission.py
  sweep.py
  train.py
  ...
  • demo.ipynb demonstrates how to load the best V1T model and inference the Sensorium+ test set, as well as extracting the attention rollout maps.
  • sweep.py performs hyperparameter tuning using Weights & Biases.
  • train.py contains the model training procedure.
  • data store the datasets, please check data/README.md for more information.
  • misc contains scripts and notebooks to generate various plots and figures used in the paper.
  • src/v1t contains the code for the main Python package.

Installation

  • Create a new conda environment in Python 3.10.
    conda create -n v1t python=3.10
  • Activate v1t virtual environment
    conda activate v1t
  • We have created a setup.sh script to install the relevant conda and pip packages for macOS and Ubuntu devices.
    sh setup.sh
  • Alternative, you can install PyTorch 2.0 and all the relevant packages with:
    # install PyTorch
    conda install -c pytorch pytorch=2.0 torchvision torchaudio -y
    # install V1T package
    pip install -e .

Train model

  • An example command to train a V1T core and Gaussian readout on the Sensorium+ dataset
    python train.py --dataset data/sensorium --output_dir runs/v1t_model --core vit --readout gaussian2d --behavior_mode 3 --batch_size 16
  • use the --help flag to see all available options

Visualize training performance

  • The training code train.py uses both TensorBoard and Weights & Biases to log training information.
    • TensorBoard
      • Use the following command to monitor training performance with TensorBoard
        tensorboard --logdir runs/v1t_model --port 6006
      • Visit localhost:6006 on your browser
    • Weights & Biases
      • use --use_wandb and (optional) --wandb_group <group name> to enable wandb logging.