version: 0.1.2
Tools for WoE Transformation mostly used in ScoreCard Model for credit rating
We can simply use pip to install, as the following:
$ pip install woe
or installing from git
$ pip install git+https://github.com/boredbird/woe
- Split tree with IV criterion
- Rich and plentiful model eval methods
- Unified format and easy for output
- Storage of IV tree for follow-up use
woe aims to only support Python 2.7, so there is no guarantee for Python 3.
In the examples directory, there is a simple woe transformation program as tutorials.
Or you can write a more complex program with this woe package.
woe 0.1.1 2017-11-28
- woe.config.load_file(): change param data_path to be optional
- woe.eval.eval_feature_stability(): fix bug : psi_dict['stability_index'] computation error
- woe.feature_process.change_feature_dtype(): add friendly tips when encounter a error
- woe.feature_process.calulate_iv(): refactor the code
- woe.feature_process.calculate_iv_split(): refactor the code
- woe.feature_process.binning_data_split(): reduce the number of len() function calls with __len__() and shape attributes;replace namedtuple with dict
- woe.feature_process.fillna(): new added function to fill null value
- woe.GridSearch.grid_search_lr_c(): list of regularization parameter c specified inside the function is changed to the user specified
woe 0.0.9 2017-11-21
- Add module : GridSearch for the search of optimal hyper parametric C in LogisticRegression
- Code refactoring: function compute_ks and plot_ks
woe 0.0.8 2017-09-28
- More flexible: cancel conditional restriction in function feature_process.change_feature_dtype()
- Fix bug: the wrong use of deepcopy in function feature_process.woe_trans()
woe 0.0.7 2017-09-19
- Fix bug: eval.eval_feature_detail raises ValueError('arrays must all be same length')
- Add parameter interface: alpha specified step learning rate ,default 0.01
Email me,[email protected].