Skip to content

Commit

Permalink
tuckute2024 benchmark (5 subj, language network)
Browse files Browse the repository at this point in the history
data from Tuckute et al., 2024: Driving and suppressing the human language network using large language models
  • Loading branch information
gretatuckute committed Apr 30, 2024
1 parent c7fe3bd commit 41c0ff1
Show file tree
Hide file tree
Showing 4 changed files with 187 additions and 1 deletion.
2 changes: 1 addition & 1 deletion .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -135,7 +135,7 @@ dmypy.json

### project specific additions:

brainscore_language/data
# brainscore_language/data
html
.vscode
*.code-workspace
Expand Down
24 changes: 24 additions & 0 deletions brainscore_language/data/tuckute2024/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
import logging

from brainscore_language import data_registry
from brainscore_language.utils.s3 import load_from_s3

_logger = logging.getLogger(__name__)

BIBTEX = """@article{article,
author = {Tuckute, Greta and Sathe, Aalok and Srikant, Shashank and Taliaferro, Maya and Wang, Mingye and Schrimpf, Martin and Kay, Kendrick and Fedorenko, Evelina},
year = {2024},
month = {01},
pages = {1-18},
title = {Driving and suppressing the human language network using large language models},
volume = {8},
journal = {Nature Human Behaviour},
doi = {10.1038/s41562-023-01783-7}
}"""

# TODO
# data_registry['Tuckute2024.5subj.lang_LH_netw'] = lambda: load_from_s3(
# identifier="Pereira2018.language",
# version_id="fq0gh.P7ThLu6DWUulho5W_F.YTEhDqJ",
# sha1="f8434b4022f5b2c862f0ff2854d5b3f5f2a7fb96")

138 changes: 138 additions & 0 deletions brainscore_language/data/tuckute2024/data_packaging.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,138 @@
import pandas as pd
import numpy as np
import logging
import sys
from brainio.assemblies import NeuroidAssembly
from pathlib import Path


def groupby_coord(df: pd.DataFrame,
coord_col: str = 'item_id',
aggfunc: str = 'mean',
) -> pd.DataFrame:
"""
Group a pandas dataframe by the coordinates specified in coord_cols.
Most common use case: group by item_id (across several UIDs).
This function by default groups the numeric columns according to the aggfunc (mean by default).
For the string columns, the first value is kept. Importantly, we check whether all string columns are the same for
each item_id (or other coordinate). Then, we only keep the coords that are shared across all item_ids
(such that we avoid the scenario where we think we can use a string column as a coordinate, but in reality it was
different for each occurence of that item_id).
Args:
df (pd.DataFrame): dataframe to group
coord_col (str): column to group by (currently only supports one coord col)
aggfunc: aggregation function for numeric columns. If std/sem, always use n-1 for ddof
Returns:
df_grouped (pd.DataFrame): grouped dataframe
"""

df_to_return = df.copy(deep=True)

# Create df that is grouped by col coord using aggfunc
# Keep string columns as is (first)
if aggfunc == 'mean':
df_grouped = df_to_return.groupby(coord_col).agg(
lambda x: x.mean() if np.issubdtype(x.dtype, np.number) else x.iloc[0])
elif aggfunc == 'median':
df_grouped = df_to_return.groupby(coord_col).agg(
lambda x: x.median() if np.issubdtype(x.dtype, np.number) else x.iloc[0])
elif aggfunc == 'std':
df_grouped = df_to_return.groupby(coord_col).agg(
lambda x: x.std(ddof=1) if np.issubdtype(x.dtype, np.number) else x.iloc[0])
elif aggfunc == 'sem':
df_grouped = df_to_return.groupby(coord_col).agg(
lambda x: x.sem(ddof=1) if np.issubdtype(x.dtype, np.number) else x.iloc[0])
else:
raise ValueError(f'aggfunc {aggfunc} not supported')

# Check whether the string arguments were all the same (to ensure correct grouping and metadata for str cols) ###
shared_str_cols = []
not_shared_str_cols = []
for coord_val in df_grouped.index:
# Get the values of the coordinate of interest in df_to_return
df_test = df_to_return.loc[df_to_return[coord_col] == coord_val, :]
df_test_object = df_test.loc[:, df_test.dtypes == object] # Get the string cols

# If not nan, check that each col has unique values
if not df_test_object.isna().all().all():
for col in df_test_object.columns:
if len(df_test_object[col].unique()) > 1:
# print(f'Column {col} has multiple values for item_id {item_id}: {df_test_object[col].unique()}')
not_shared_str_cols.append(col)
else:
# print(f'Column {col} for item_id {coord_col} have the same value, i.e. we can retain the metadata when grouping by item_id')
shared_str_cols.append(col)

# Check that all shared_str_cols are the same for all item_ids
shared_str_cols_unique = np.unique(shared_str_cols)
not_shared_str_cols_unique = np.unique(not_shared_str_cols)

# Drop the not_shared_str_cols from df_item_id
df_grouped_final = df_grouped.drop(columns=not_shared_str_cols_unique)

return df_grouped_final


def _tuckute2024_5subj(source: str,
roi: str = "lang_LH_netw"):
"""
Package the data from Tuckute et al. 2024 into an xarray DataArray.
The benchmark consists of 5 train subjects; 1,000 sentences each (one rep).
The data are averaged across the 5 subjects for the language network (LH regions: IFGorb, IFG, MFG, AntTemp, PostTemp).
"""

df = pd.read_csv(source)

# Filter out the train subjects
train_subjects = [848, 853, 865, 875, 876]

df = df[df['target_UID'].isin(train_subjects)]

# Filter out the ROIs of interest
df = df[df['roi'].isin([roi])]
# Assert just one ROI
assert len(df['roi'].unique()) == 1

# Average over item_id
df_mean = groupby_coord(df=df, coord_col='item_id', aggfunc='mean')

assembly = NeuroidAssembly(np.expand_dims(df_mean.response_target.values, axis=1),
# This is the z-scored data. Use response_target_non_norm for non-z-scored data
dims=('presentation', 'neuroid'),
coords={'stimulus_id': ('presentation', df_mean.index.values),
'stimulus': ('presentation', df_mean.sentence.values),
'cond': ('presentation', df_mean.cond.values),
'cond_approach': ('presentation', df_mean.cond_approach.values),
'neuroid_id': ('neuroid', [1]), # Only one neuroid (ROI)
'subject_UID': ('neuroid', ['-'.join([str(s) for s in train_subjects])]),
'roi': ('neuroid', df_mean.roi.unique()),
})


return assembly


def load_tuckute2024_5subj(source: str = 'brain-lang-data_participant_20230728.csv',
roi: str = "lang_LH_netw",
cache: bool = False):
""" """
dataset_name = (
f"tuckute2024_5subj_{roi}"
)

assembly = _tuckute2024_5subj(source)

if cache:
assembly_path = Path(f"tuckute2024_5subj_{roi}.nc")
raise NotImplementedError("Caching not implemented yet")

return assembly


if __name__ == '__main__':
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
load_tuckute2024_5subj(source='brain-lang-data_participant_20230728.csv',
roi="lang_LH_netw")
24 changes: 24 additions & 0 deletions brainscore_language/data/tuckute2024/test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
import numpy as np

from brainscore_language import load_dataset
from brainscore_language.data.tuckute2024.data_packaging import load_tuckute2024_5subj

class TestData:
def test_language(self,
load_from_cache: bool = False):
if load_from_cache:
assembly = load_dataset('tuckute2024_5subj_lang_LH_netw')
else:
assembly = load_tuckute2024_5subj()

assert assembly.dims == ('presentation', 'neuroid')
assert assembly.shape == (1000, 1)
assert len(assembly.stimulus.values) == 1000
assert np.unique(assembly.stimulus.values).shape[0] == 1000
assert len(assembly.stimulus_id.values) == 1000
assert np.unique(assembly.stimulus_id.values).shape[0] == 1000
assert assembly.neuroid_id.values == [1]
assert 1.28 < np.max(assembly.data) < 1.29



0 comments on commit 41c0ff1

Please sign in to comment.