Skip to content

[ICLR 2025] Official code repository for Spartun3D

Notifications You must be signed in to change notification settings

bluelancer/Spartun3D

 
 

Repository files navigation

SPARTUN3D: Situated Spatial Understanding of 3D World in Large Language Models

overview

Get Started

  1. Clone Github repo.
git clone https://github.com/zhangyuejoslin/Spartun3D.git
cd Spartun3D
  1. Following LEO to create a conda environment and install third-party libraries for point cloud backbones.

Generating Data for Spartun3D

  1. Generate Metadata
    Run scene_process.py to collect raw spatial information. We provide the metadata at: Google Drive Link.

  2. Generate Data with GPT-4o
    Run the code in gpt_code to generate data using GPT-4o. Please provide your OpenAI API key.

  3. Post-Process the Generated Data
    Use data_process/3Rscan/gpt_code/post_process.py to refine the generated data.

  4. Generated Captions and QA Pairs
    We provide the generated captions and question-answer pairs in data_process/spartun3D_data.
    Please download the corresponding scene data from LEO.

Train and Test

python launch

python launch.py --mode python --config configs/default.yaml

accelerate launch

python launch.py --mode accelerate --config configs/default.yaml

SQA3D Eval

sqa3d checkpoint

About

[ICLR 2025] Official code repository for Spartun3D

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 90.0%
  • Cuda 6.0%
  • C++ 3.4%
  • C 0.6%