Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

log tensors #27

Open
wants to merge 1 commit into
base: gqa
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 38 additions & 0 deletions src/transformers/models/gpt_bigcode/modeling_gpt_bigcode.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,34 @@
# See all GPTBigCode models at https://huggingface.co/models?filter=gpt_bigcode
]

DEBUG_DIR = "/app/dataset/debug_logs/2/"
DEBUG_LEVEL = 1000

def log_tensor(tensor, name):
mu = tensor.mean().item()
std = tensor.std().item()
mini = tensor.min().item()
maxi = tensor.max().item()
# Get sample
target_samples = 2 ** (DEBUG_LEVEL - 3)
step = max(tensor.numel() // target_samples, 1)
while step > 1 and any(step % s == 0 and s > 1 for s in tuple(tensor.shape)):
step -= 1
samples = tensor.flatten()[: target_samples * step : step].cpu()

# print(f"{name}: shape {tensor.shape} mu: {mu:.5f} std: {std:.5f} min: {mini:.5f} max: {maxi:.5f}")
torch.save({
'name': name,
'shape': tensor.shape,
'dtype': tensor.dtype,
'device': tensor.device,
'mu': mu,
'std': std,
'min': mini,
'max': maxi,
'samples': samples,
'step': step
}, f"{DEBUG_DIR}/{name}.pt")

# Fused kernels
# Use separate functions for each case because conditionals prevent kernel fusion.
Expand Down Expand Up @@ -286,8 +314,12 @@ def forward(
query = _apply_rotary_embeddings(query, rotary_embedding_frequencies_q)
key = _apply_rotary_embeddings(key, rotary_embedding_frequencies_k)

log_tensor(query, f"layer {self.layer_idx} attn query")
log_tensor(key, f"layer {self.layer_idx} attn key")
log_tensor(value, f"layer {self.layer_idx} attn value")
attn_output, attn_weights = self._attn(query, key.transpose(-1, -2), value, attention_mask, head_mask)

log_tensor(attn_output, f"layer {self.layer_idx} attn context")
attn_output = self.c_proj(attn_output)
attn_output = self.resid_dropout(attn_output)

Expand Down Expand Up @@ -325,6 +357,7 @@ def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.Fl
class GPTBigCodeBlock(nn.Module):
def __init__(self, config, layer_idx=None):
super().__init__()
self.layer_idx = layer_idx
hidden_size = config.hidden_size
self.inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size

Expand Down Expand Up @@ -357,6 +390,7 @@ def forward(
]:
residual = hidden_states
hidden_states = self.ln_1(hidden_states)
log_tensor(hidden_states, f"layer {self.layer_idx} Layer norm 1")
attn_outputs = self.attn(
hidden_states,
layer_past=layer_past,
Expand All @@ -369,8 +403,10 @@ def forward(
)
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
outputs = attn_outputs[1:]
log_tensor(attn_output, f"layer {self.layer_idx} Attn output")
# residual connection
hidden_states = attn_output + residual
log_tensor(hidden_states, f"layer {self.layer_idx} Attn residual")

if encoder_hidden_states is not None:
# add one self-attention block for cross-attention
Expand Down Expand Up @@ -398,7 +434,9 @@ def forward(

residual = hidden_states
hidden_states = self.ln_2(hidden_states)
log_tensor(hidden_states, f"layer {self.layer_idx} Layer norm 2")
feed_forward_hidden_states = self.mlp(hidden_states)
log_tensor(feed_forward_hidden_states, f"layer {self.layer_idx} MLP output")
# residual connection
hidden_states = residual + feed_forward_hidden_states

Expand Down