-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
34 changed files
with
2,340 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
MIT License | ||
|
||
Copyright (c) 2019 OGB Team | ||
|
||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
|
||
The above copyright notice and this permission notice shall be included in all | ||
copies or substantial portions of the Software. | ||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
SOFTWARE. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,162 @@ | ||
### example code of GIN using DGL | ||
import torch | ||
from torch.utils.data import DataLoader | ||
import dgl.function as fn | ||
import dgl | ||
import torch.optim as optim | ||
import torch.nn.functional as F | ||
|
||
from tqdm import tqdm | ||
import argparse | ||
import time | ||
import numpy as np | ||
|
||
### importing OGB | ||
|
||
### for loading dataset | ||
from ogb.graphproppred.dataset_dgl import DglGraphPropPredDataset, collate_dgl | ||
### for encoding raw molecule features | ||
from ogb.graphproppred.mol_encoder import AtomEncoder, BondEncoder | ||
### for evaluation | ||
from ogb.graphproppred import Evaluator | ||
|
||
criterion = torch.nn.BCEWithLogitsLoss() | ||
|
||
class GINConv(torch.nn.Module): | ||
""" | ||
- GIN architecture. | ||
- Assume both node_feat and edge_feat have the dimensionality of emb_dim. | ||
""" | ||
def __init__(self, emb_dim): | ||
super(GINConv, self).__init__() | ||
|
||
self.mlp = torch.nn.Sequential(torch.nn.Linear(emb_dim, 2*emb_dim), torch.nn.BatchNorm1d(2*emb_dim), torch.nn.ReLU(), torch.nn.Linear(2*emb_dim, emb_dim)) | ||
self.eps = torch.nn.Parameter(torch.Tensor([0])) | ||
|
||
def forward(self, graph, node_feat, edge_feat): | ||
graph = graph.local_var() | ||
graph.ndata['h_n'] = node_feat | ||
graph.edata['h_e'] = edge_feat | ||
|
||
### u, v, e represent source nodes, destination nodes and edges among them | ||
graph.update_all(fn.u_add_e('h_n', 'h_e', 'm'), fn.sum('m', 'neigh')) | ||
rst = (1 + self.eps) * node_feat + graph.ndata['neigh'] | ||
rst = self.mlp(rst) | ||
|
||
return rst | ||
|
||
|
||
class GIN(torch.nn.Module): | ||
def __init__(self, num_layer = 5, emb_dim = 100, num_task = 2, device = "cpu"): | ||
super(GIN, self).__init__() | ||
|
||
self.num_layer = num_layer | ||
|
||
self.gins = torch.nn.ModuleList() | ||
self.batch_norms = torch.nn.ModuleList() | ||
for layer in range(self.num_layer): | ||
self.gins.append(GINConv(emb_dim)) | ||
self.batch_norms.append(torch.nn.BatchNorm1d(emb_dim)) | ||
|
||
### convenient module to encode/embed raw molecule node/edge features. (TODO) make it more efficient. | ||
self.atom_encoder = AtomEncoder(emb_dim) | ||
self.bond_encoder = BondEncoder(emb_dim) | ||
|
||
self.graph_pred_linear = torch.nn.Linear(emb_dim, num_task) | ||
self.device = device | ||
|
||
|
||
def forward(self, g): | ||
h_node = self.atom_encoder(g.ndata["feat"].to(self.device)) | ||
h_edge = self.bond_encoder(g.edata["feat"].to(self.device)) | ||
|
||
### iterative message passing to obtain node embeddings | ||
for layer in range(self.num_layer): | ||
h_node = self.gins[layer](g, h_node, h_edge) | ||
h_node = self.batch_norms[layer](h_node) | ||
h_node = F.relu(h_node) | ||
|
||
### pooling | ||
g.ndata['h_node'] = h_node | ||
h_graph = dgl.mean_nodes(g, 'h_node') | ||
|
||
return self.graph_pred_linear(h_graph) | ||
|
||
|
||
|
||
def train(model, device, loader, optimizer): | ||
model.train() | ||
|
||
for step, (graphs, labels) in enumerate(tqdm(loader, desc="Iteration")): | ||
labels = labels.to(device) | ||
pred = model(graphs) | ||
optimizer.zero_grad() | ||
is_valid = labels == labels | ||
loss = criterion(pred.to(torch.float32)[is_valid], labels.to(torch.float32)[is_valid]) | ||
loss.backward() | ||
optimizer.step() | ||
|
||
def eval(model, device, loader, evaluator): | ||
model.eval() | ||
y_true = [] | ||
y_pred = [] | ||
|
||
for step, (graphs, labels) in enumerate(tqdm(loader, desc="Iteration")): | ||
|
||
with torch.no_grad(): | ||
pred = model(graphs) | ||
|
||
y_true.append(labels.view(pred.shape).detach().cpu()) | ||
y_pred.append(pred.detach().cpu()) | ||
|
||
y_true = torch.cat(y_true, dim = 0).numpy() | ||
y_pred = torch.cat(y_pred, dim = 0).numpy() | ||
|
||
input_dict = {"y_true": y_true, "y_pred": y_pred} | ||
|
||
return evaluator.eval(input_dict) | ||
|
||
|
||
def main(): | ||
# Training settings | ||
parser = argparse.ArgumentParser(description='GIN with Pytorch Geometrics') | ||
parser.add_argument('--device', type=int, default=0, | ||
help='which gpu to use if any (default: 0)') | ||
parser.add_argument('--batch_size', type=int, default=32, | ||
help='input batch size for training (default: 32)') | ||
parser.add_argument('--epochs', type=int, default=100, | ||
help='number of epochs to train (default: 100)') | ||
parser.add_argument('--num_workers', type=int, default=0, | ||
help='number of workers (default: 0)') | ||
parser.add_argument('--dataset', type=str, default="ogbg-mol-tox21", | ||
help='dataset name (default: ogbg-mol-tox21)') | ||
args = parser.parse_args() | ||
|
||
device = torch.device("cuda:" + str(args.device)) if torch.cuda.is_available() else torch.device("cpu") | ||
|
||
|
||
### automatic dataloading and splitting | ||
dataset = DglGraphPropPredDataset(name = args.dataset) | ||
splitted_idx = dataset.get_idx_split() | ||
|
||
### automatic evaluator. takes dataset name as input | ||
evaluator = Evaluator(args.dataset) | ||
|
||
train_loader = DataLoader(dataset[splitted_idx["train"]], batch_size=args.batch_size, shuffle=True, collate_fn = collate_dgl, num_workers = args.num_workers) | ||
valid_loader = DataLoader(dataset[splitted_idx["valid"]], batch_size=args.batch_size, shuffle=False, collate_fn = collate_dgl, num_workers = args.num_workers) | ||
test_loader = DataLoader(dataset[splitted_idx["test"]], batch_size=args.batch_size, shuffle=False, collate_fn = collate_dgl, num_workers = args.num_workers) | ||
|
||
model = GIN(num_task = dataset.num_tasks, device = device).to(device) | ||
|
||
optimizer = optim.Adam(model.parameters(), lr=0.001) | ||
|
||
for epoch in range(1, args.epochs + 1): | ||
train(model, device, train_loader, optimizer) | ||
#print("Evaluating training...") | ||
#print(eval(model, device, train_loader, evaluator)) | ||
print("Evaluating validation:") | ||
print(eval(model, device, valid_loader, evaluator)) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,164 @@ | ||
### example code of GIN using pytorch geometrics | ||
import torch | ||
from torch_geometric.nn import MessagePassing | ||
from torch_geometric.nn import global_mean_pool | ||
from torch_geometric.data import DataLoader | ||
import torch.optim as optim | ||
import torch.nn.functional as F | ||
|
||
from tqdm import tqdm | ||
import argparse | ||
import time | ||
import numpy as np | ||
|
||
### importing OGB | ||
|
||
### for loading dataset | ||
from ogb.graphproppred.dataset_pyg import PygGraphPropPredDataset | ||
### for encoding raw molecule features | ||
from ogb.graphproppred.mol_encoder import AtomEncoder, BondEncoder | ||
### for evaluation | ||
from ogb.graphproppred import Evaluator | ||
|
||
criterion = torch.nn.BCEWithLogitsLoss() | ||
|
||
class GINConv(MessagePassing): | ||
""" | ||
- GIN architecture. | ||
- Assume both x and edge_attr have the dimensionality of emb_dim. | ||
""" | ||
def __init__(self, emb_dim): | ||
super(GINConv, self).__init__(aggr="add") | ||
|
||
self.mlp = torch.nn.Sequential(torch.nn.Linear(emb_dim, 2*emb_dim), torch.nn.BatchNorm1d(2*emb_dim), torch.nn.ReLU(), torch.nn.Linear(2*emb_dim, emb_dim)) | ||
self.eps = torch.nn.Parameter(torch.Tensor([0])) | ||
|
||
def forward(self, x, edge_index, edge_attr): | ||
### propagate = message -> aggr -> update | ||
h = (1 + self.eps) * x + self.propagate(edge_index, x=x, edge_attr=edge_attr) | ||
out = self.mlp(h) | ||
|
||
return out | ||
|
||
### message to be aggregated | ||
### x_j is the feature of source node | ||
def message(self, x_j, edge_attr): | ||
return x_j + edge_attr | ||
|
||
def update(self, aggr_out): | ||
return aggr_out | ||
|
||
|
||
class GIN(torch.nn.Module): | ||
def __init__(self, num_layer = 5, emb_dim = 100, num_task = 2): | ||
super(GIN, self).__init__() | ||
|
||
self.num_layer = num_layer | ||
|
||
self.gins = torch.nn.ModuleList() | ||
self.batch_norms = torch.nn.ModuleList() | ||
for layer in range(self.num_layer): | ||
self.gins.append(GINConv(emb_dim)) | ||
self.batch_norms.append(torch.nn.BatchNorm1d(emb_dim)) | ||
|
||
### convenient module to encode/embed raw molecule node/edge features. (TODO) make it more efficient. | ||
self.atom_encoder = AtomEncoder(emb_dim) | ||
self.bond_encoder = BondEncoder(emb_dim) | ||
|
||
self.graph_pred_linear = torch.nn.Linear(emb_dim, num_task) | ||
|
||
def forward(self, batch): | ||
x, edge_index, edge_attr, batch = batch.x, batch.edge_index, batch.edge_attr, batch.batch | ||
|
||
h = self.atom_encoder(x) | ||
edge_emb = self.bond_encoder(edge_attr) | ||
|
||
### iterative message passing to obtain node embeddings | ||
for layer in range(self.num_layer): | ||
h = self.gins[layer](h, edge_index, edge_emb) | ||
h = self.batch_norms[layer](h) | ||
h = F.relu(h) | ||
|
||
### pooling | ||
h_graph = global_mean_pool(h, batch) | ||
|
||
return self.graph_pred_linear(h_graph) | ||
|
||
|
||
def train(model, device, loader, optimizer): | ||
model.train() | ||
|
||
for step, batch in enumerate(tqdm(loader, desc="Iteration")): | ||
batch = batch.to(device) | ||
pred = model(batch) | ||
optimizer.zero_grad() | ||
is_valid = batch.y == batch.y | ||
loss = criterion(pred.to(torch.float32)[is_valid], batch.y.to(torch.float32)[is_valid]) | ||
loss.backward() | ||
optimizer.step() | ||
|
||
def eval(model, device, loader, evaluator): | ||
model.eval() | ||
y_true = [] | ||
y_pred = [] | ||
|
||
for step, batch in enumerate(tqdm(loader, desc="Iteration")): | ||
batch = batch.to(device) | ||
|
||
with torch.no_grad(): | ||
pred = model(batch) | ||
|
||
y_true.append(batch.y.view(pred.shape).detach().cpu()) | ||
y_pred.append(pred.detach().cpu()) | ||
|
||
y_true = torch.cat(y_true, dim = 0).numpy() | ||
y_pred = torch.cat(y_pred, dim = 0).numpy() | ||
|
||
input_dict = {"y_true": y_true, "y_pred": y_pred} | ||
|
||
return evaluator.eval(input_dict) | ||
|
||
|
||
def main(): | ||
# Training settings | ||
parser = argparse.ArgumentParser(description='GIN with Pytorch Geometrics') | ||
parser.add_argument('--device', type=int, default=0, | ||
help='which gpu to use if any (default: 0)') | ||
parser.add_argument('--batch_size', type=int, default=32, | ||
help='input batch size for training (default: 32)') | ||
parser.add_argument('--epochs', type=int, default=100, | ||
help='number of epochs to train (default: 100)') | ||
parser.add_argument('--num_workers', type=int, default=0, | ||
help='number of workers (default: 0)') | ||
parser.add_argument('--dataset', type=str, default="ogbg-mol-tox21", | ||
help='dataset name (default: ogbg-mol-tox21)') | ||
args = parser.parse_args() | ||
|
||
device = torch.device("cuda:" + str(args.device)) if torch.cuda.is_available() else torch.device("cpu") | ||
|
||
|
||
### automatic dataloading and splitting | ||
dataset = PygGraphPropPredDataset(name = args.dataset) | ||
splitted_idx = dataset.get_idx_split() | ||
|
||
### automatic evaluator. takes dataset name as input | ||
evaluator = Evaluator(args.dataset) | ||
|
||
train_loader = DataLoader(dataset[splitted_idx["train"]], batch_size=args.batch_size, shuffle=True, num_workers = args.num_workers) | ||
valid_loader = DataLoader(dataset[splitted_idx["valid"]], batch_size=args.batch_size, shuffle=False, num_workers = args.num_workers) | ||
test_loader = DataLoader(dataset[splitted_idx["test"]], batch_size=args.batch_size, shuffle=False, num_workers = args.num_workers) | ||
|
||
model = GIN(num_task = dataset.num_tasks).to(device) | ||
|
||
optimizer = optim.Adam(model.parameters(), lr=0.001) | ||
|
||
for epoch in range(1, args.epochs + 1): | ||
train(model, device, train_loader, optimizer) | ||
#print("Evaluating training...") | ||
#print(eval(model, device, train_loader, evaluator)) | ||
print("Evaluating validation:") | ||
print(eval(model, device, valid_loader, evaluator)) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
Oops, something went wrong.