Skip to content

A toolkit for matrix sensor data processing 阵列传感器数据处理工具库

Notifications You must be signed in to change notification settings

atomiechen/MatSense

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

91 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MatSense

PyPi

A toolkit that supports both real-time and off-line matrix sensor data processing and 3D visualization.

schematic

A typical real-time data flow would be in a client-server manner:

  • Matrix sensor data: collected (e.g. by Arduino) and transmitted via a serial port to the computer.
  • Data processing: the series of matrix data frames are processed and served by the server.
  • Applications: clients connect to server to get processed data and do further work.

Data can also be recorded to and processed from files.

schematic

3D visualization tools are provided to play real-time stream or recorded data.

Installation

From PyPI:

pip install MatSense

This will install Matplotlib to implement 3D visualization tools.

If you want to further try PyQtGraph as visualization method:

pip install MatSense[pyqtgraph]

Usage

Off-the-shelf tools

3 handy tools are provided. Pass -h to get detailed information.

  • matserver / python -m matsense.server
    • functions:
      • receive data from serial port, process and serve
      • process data from file(s) and output to file
      • other helpful functions
    • supported processing methods:
      • voltage-pressure conversion (optional for pressure data)
      • spatial filter (in-frame denoising): none, ideal, butterworth, gaussian
      • temporal filter (pixel-wise between-frame denoising): none, moving average, rectangular window
      • calibration: static or dynamic
  • matclient / python -m matsense.client: receive server data, process and visualize; or control server via interactive commands
    • supported processing methods:
      • interpolation
      • blob parsing
  • matdata / python -m matsense.data: visualize file data, or process off-line data

Configuration

All 3 tools can be totally configured by a YAML configuration file:

## server console
matserver --config your_config.yaml

## client console
matclient --config your_config.yaml

## off-line data processing
matdata --config your_config.yaml

Priority: commandline arguments > config file > program defaults.

A template YAML configuration (unused options can be set to ~ or removed):

## template configurations
## ~ for defaults

## configurations for matserver mode
server_mode:
  ## enable backend service
  service: ~
  ## enable visualization or not (suppress service)
  visualize: ~
  ## enumerate all serial ports
  enumerate: ~

  ## (suppress serial) simulated data source without actual serial connection
  ## debug mode: true, false
  debug: ~

  ## (suppress serial) use file as data source or not: true, false
  use_file: ~

## configurations for matclient mode
client_mode:
  ## make client present raw data
  raw: ~
  ## interactive command line mode
  interactive: ~

## configurations for matdata mode
data_mode:
  ## process file data instead of visualization
  process: ~

## configurations for file data
data:
  ## input filename(s), filename or a list of filenames: [a.csv, b.csv, ...]
  in_filenames: ~
  ## output filename, default filename is used when not provided
  out_filename: ~

## configurations for matrix sensor
sensor:
  ## sensor shape: [16, 16], [8, 8], [6, 24]
  shape: ~
  ## total points, can be set to ~
  total: ~
  ## 0/1 mask to exclude non-existent points
  ## |- for multiline without a newline in the end
  mask: ~

## configurations for serial port
serial:
  ## baudrate: 9600, 250000, 500000, 1000000
  baudrate: ~
  ## serial port timeout, in seconds
  timeout: ~
  ## serial port
  port: ~
  ## data transmission protocol: simple, secure
  protocol: ~
  ## support IMU data
  imu: ~

## configurations for client-server connections
connection:
  ## use UDP or UNIX domain socket
  udp: ~
  ## udp address format: 127.0.0.1:20503
  ## UNIX deomain socket address format: /var/tmp/unix.socket.server
  server_address: ~
  client_address: ~

## configurations for data processing
process:
  ### voltage to the reciprocal of resistance
  ## reference voltage: 255, 255/3.6*3.3
  V0: ~
  ## constant factor: 1
  R0_RECI: ~
  ## convert voltage to resistance: true
  convert: ~

  ### server data processing
  ## no filtering and calibration
  raw: ~
  ## time of warming up in seconds: 1
  warm_up: ~
  ## spatial filter: none, ideal, butterworth, gaussian
  filter_spatial: ~
  ## spatial filter cut-off freq: 3.5
  filter_spatial_cutoff: ~
  ## Butterworth filter order: 2
  butterworth_order: ~
  ## temporal filter: none, moving average, rectangular window
  filter_temporal: ~
  ## temporal filter size: 15
  filter_temporal_size: ~
  ## rectangular window filter cut-off frequency: 0.04
  rw_cutoff: ~
  ## calibrative frames, 0 for no calibration: 0, 200
  cali_frames: ~
  ## calibration frame window size, 0 for static and >0 for dynamic: 0, 10000
  cali_win_size: ~
  ## intermediate result: 0, 1, 2
    ## 0: convert voltage to reciprocal resistance
    ## 1: convert & spatial filter
    ## 2: convert & spatial filter & temporal filter
  intermediate: ~

  ### (optional) client data processing
  ## interpolation shape, default to sensor.shape
  interp: ~
  ## interpolation order: 3
  interp_order: ~
  ## filter out blobs: true
  blob: ~
  ## total blob number: 3
  blob_num: ~
  ## blob filter threshole: 0.1, 0.15
  threshold: ~
  ## special check for certain hardwares: false
  special_check: ~

pointing:
  ## value bound for checking cursor moving state: 0
  bound: ~
  ## directly map coordinates or relatively (suppress trackpoint)
  direct_map: ~
  ## use ThinkPad's TrackPoint (red dot) control style
  trackpoint: ~
  ## smoothing
  alpha: ~

## configurations for visualization
visual:
  ## using pyqtgraph or matplotlib
  pyqtgraph: ~
  ## z-axis limit: 3, 5
  zlim: ~
  ## frame rate: 100
  fps: ~
  ## scatter plot: false
  scatter: ~
  ## show text value: false
  show_value: ~

Useful modules

  • matsense.uclient

    • Uclient: interface to receive data from server
  • matsense.process: data processing tools

    • DataHandlerPressure: process pressure data (conversion & filtering & calibration)
    • BlobParser
    • Interpolator
    • PointSmoother
    • CursorController
    • PressureSelector
  • matsense.datasetter: data setter, using serial port or file data

    • DataSetterSerial
    • DataSetterFile
  • matense.tools: configuration and other helpful tools

  • matsense.filemanager: file I/O tools

  • matsense.visual: visualization tools

    • from matsense.visual.player_matplot import Player3DMatplot: 3D player using Matplotlib
    • from matsense.visual.player_pyqtgraph import Player3DPyqtgraph: 3D player using PyQtGraph

Server-Client Protocol

Use matclient -i to control server.

The underlying server-client communication protocol is:

Name meaning Value Format Return Return format
CLOSE close server 0 1byte status 1byte
DATA get a data frame 1 1byte frame+index 256double+1int
RAW get a raw data frame 2 1byte frame+index 256double+1int
REC_DATA ask server to record data to file 3(+filename) 1byte+string status+filename 1byte+string
REC_RAW ask server to record raw data to file 4(+filename) 1byte+string status+filename 1byte+string
REC_STOP ask server to stop recording 5 1byte status 1byte
RESTART restart server with config string 6(+config_str) 1byte+string status+config_string 1byte+string
RESTART_FILE restart server with config filename 10+config_filename 1byte+string status+config_string 1byte+string
CONFIG get server config 7 1byte status+config_string 1byte+string
DATA_IMU get IMU data 9 1byte IMU_frame+index 6double+1int
  • status (1 byte): 0 for success and 255 for failure

Author

Atomie CHEN: [email protected]