Releases: ashvardanian/less_slow.cpp
Less Slow v0.6: Thrust → CUDA → PTX → SASS 🏋️♂️🏋️♀️
It's almost impossible to imagine modern High-Performance Computing without GPUs. Yet, there are surprisingly few "full stack" demos out there for folks wanting to build intuition around CUDA C++, PTX Intermediate Representations, SASS Assembly, and higher-level libraries like Thrust, CUB, or the various cuBLAS flavors. This new release of Less Slow covers all of those! 🥳
Tensor Cores
The main highlight is an in-depth look at Tensor Core designs, from their extensive type system to the complexity of tile shapes—notoriously under-documented and confusing areas. These capabilities differ across Volta, Turing, Ampere, Ada, and Hopper GPUs, mapping to different PTX intrinsics (like wmma
, binary bmma
, or warp-group wgmma
) and culminating in yet another shape at the SASS level with instructions such as multiple HMMA.884.F32.F32.STEPx
instructions for each wmma.mma.sync.aligned.row.col.m16n16k16.f32.f32
intrinsic on Volta. And if you believe that instruction is long... be warned 😅
__global__ void tops_f16f16_sm70tc_16x16x16_1024unroll_cuda_kernel() {
using namespace nvcuda;
wmma::fragment<wmma::matrix_a, 16,16,16, half, wmma::row_major> a_frag;
wmma::fragment<wmma::matrix_b, 16,16,16, half, wmma::col_major> b_frag;
wmma::fragment<wmma::accumulator, 16,16,16, half> c_frag;
for (int i = 0; i < 1024; ++i)
wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
}
$ cuobjdump -sass less_slow_from_cu.cubin | grep -i mma
# e.g. HMMA.884.F32.F32.STEP2 ...
This indicates the 8×8×4 shape actually used by the hardware on Volta.
PTX vs SASS
I've also hand-written PTX kernels, that may look like:
.visible .entry tops_f16f16_sm70tc_16x16x16_1024loop_ptx_kernel()
{
// ...
loop_start:
// A single wmma instruction
wmma.mma.sync.aligned.row.col.m16n16k16.f16.f16
{ %f0, %f1, %f2, %f3 }, // output accumulators
{ %f4, ... }, // A
{ %f12, ... }, // B
{ %f0, %f1, %f2, %f3 }; // input accumulators
// ...
bra loop_start;
}
Using the provided scripts, you can see for yourself just how different manually written vs. machine-generated PTX can be and how to invoke kernels directly from C++ in various ways — whether through the CUDA Runtime API or the CUDA Driver API — loading and JIT-compiling bits of PTX on the fly!
cuInit(0);
CUdevice dev; cuDeviceGet(&dev, 0);
CUcontext ctx; cuCtxCreate(&ctx, 0, dev);
CUmodule mod; cuModuleLoad(&mod, "less_slow.ptx");
CUfunction fun; cuModuleGetFunction(&fun, mod, "tops_f16f16_sm70tc_16x16x16_1024loop_ptx_kernel");
void* args[] = { /* kernel parameters here */ };
cuLaunchKernel(fun,
1, 1, 1, // gridDim
256, 1, 1,// blockDim
0, nullptr, args, nullptr);
cuCtxSynchronize();
cuModuleUnload(mod);
cuCtxDestroy(ctx);
cuBLAS on Practice
I've also included theoretical throughput benchmarks alongside real matrix multiplications via cuBLAS in case you want to compare actual performance to the raw theoretical numbers. One important observation here may be the lack of low-resolution numeric types:
if constexpr (std::is_same_v<scalar_type_, float>) {
scalar_type_ alpha = 1, beta = 0;
cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, n, n, n, &alpha, a.begin(), lda, b.begin(), ldb, &beta, c.begin(), ldc);
} else if constexpr (std::is_same_v<scalar_type_, double>) {
scalar_type_ alpha = 1, beta = 0;
cublasDgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, n, n, n, &alpha, a.begin(), lda, b.begin(), ldb, &beta, c.begin(), ldc);
} else if constexpr (std::is_same_v<scalar_type_, __half>) {
scalar_type_ alpha = 1, beta = 0;
cublasHgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, n, n, n, &alpha, a.begin(), lda, b.begin(), ldb, &beta, c.begin(), ldc);
} else if constexpr (std::is_same_v<scalar_type_, int8_t>) {
int32_t alpha_int = 1, beta_int = 0;
cublasGemmEx(handle, CUBLAS_OP_N, CUBLAS_OP_N, n, n, n, &alpha_int, a.begin(), CUDA_R_8I, lda, b.begin(), CUDA_R_8I, ldb, &beta_int, c.begin(), CUDA_R_32I, ldc, CUDA_R_32I, CUBLAS_GEMM_DEFAULT);
}
Even integer kernels have a different signature, requiring
Beyond Linear Algebra
Since GPUs obviously go beyond linear algebra, Thrust and CUB are perfect for exploring other domains in heterogeneous computing. I’ve added snippets that mostly revolve around sorting algorithms, showcasing the differences in memory management between Thrust and CUB and explaining why CUB calls often come in pairs, like:
size_t temp_size = 0;
void *d_temp = nullptr;
cub::DeviceRadixSort::SortKeys(nullptr, temp_size, d_in_keys, d_out_keys, count);
cudaMalloc(&d_temp, temp_size);
cub::DeviceRadixSort::SortKeys(d_temp, temp_size, d_in_keys, d_out_keys, count);
This was also a good place to show how Thrust and CUB operations can be scheduled together on the same asynchronous streams and profiled with GPU time instead of CPU time to avoid unnecessary blocking ⏲️
Enjoy exploring, and happy GPU hacking! I’ll keep adding to this project (and other related ones) as we go along!
Changelog
- Add: Binary BMMA kernels for GPU (6a609a0)
- Add: Tensor Core intrinsic benchmarks (1bdb5df)
- Add: cuBLAS benchmarks (2f791fe)
- Add: Precompiled CUDA C++ kernels (c1a6f3e)
- Add: Using CUDA Driver API to JIT
.ptx
(82cb684) - Add: PTX and
.cuh
kernels (824e473) - Add: Sorting with
thrust
andcub
(df3b2c1) - Add: Thrust, CUB, CUDA sorting (551402d)
- Add: Thrust, CUB, CUDA sorting (8481114)
- Make: Drop OpenBLAS (3c92c36)
- Fix: Use
f16
MMA (141d285) - Fix: Lower PTX version for JIT (eff3854)
- Fix: Working PTX kernel (514db0f)
- Docs: Introduce Warp-Group-MMA on Hopper (400f294)
- Make: Build CUDA for multiple platforms (3283ab0)
- Fix: Avoid optimizing-out SASS code (986b8bc)
- Fix: Compiling
cuBLAS
calls (312409a) - Make: Don't compile PTX (53202e6)
- Make: Silence NVCC warnings (a6cdc74)
- Fix: NVCC compilation issues (494e705)
- Make: Upgrade
fmt
for NVCC builds (88277bf) - Fix: Ranges require
constexpr
on NVCC (c1d7b2f) - Make: Switch to CUDA Toolkit for GPU libs (2589a40)
- Make: Options for CUDA & TBB in CMake (4d03c08)
v0.5.4: Supporting MSVC on Windows 🪟
The less_slow.cpp
project now supports Microsoft Visual C++ (MSVC), thanks to the extensive list of patches suggested by @RazielXYZ 👏
Key updates include switching to OpenBLAS via FetchContent
for comparable linear algebra performance across platforms, enabling OpenMP on MSVC for parallelism in Eigen-based computations, and revising OpenMP loop indices to use int64_t
, as MSVC requires signed types for parallel loops. The detection of physical cores on high-core-count Windows systems has also been improved by implementing GetActiveProcessorCount(ALL_PROCESSOR_GROUPS)
and refining physical core detection logic. Furthermore, the integration addresses missing functionality, such as the lack of __builtin_popcountll
on MSVC, with a manual fallback for is_power_of_two
.
Additional findings include MSVC-specific behaviors, such as how linking AVX-512 code significantly slows down builds and how assembly-based benchmarks require further investigation for proper MSVC integration. Interestingly, heavily-templated libraries, like Ranges-v3 or CRTE (Compile-time RegEx), show much worse performance on MSVC than with GCC and Clang.
Release v0.5.3
Release v0.5.2
Release v0.5.1
Release v0.5.0
Release v0.4.2
v0.4: Allocators and Sparse Graphs 🕸️
This release explores high-performance graph implementations optimized for different access patterns, focusing on real-world use cases like recommendation systems and social networks. To implement those, various STL and Abseil-based containers are used to implement sparse Graph structures.
It shows:
- How to use STL's polymorphic allocators?
- How do we construct a hybrid nested container that propagates stateful allocators to the inner structures?
- Up to 300x performance difference between good implementations in different workload patterns!
Of other neat tricks, shows:
- How can the three-way comparison operator be used with
std::tie
? - What's the difference between
std::weak_ordering
and the strong one ? - Where can the
[[no_unique_address]]
attribute be used?
Implementation
It extends the Graph API to:
upsert_edge(from, to, weight)
: Inserts or updates an existing edge between two vertices.get_edge(from, to)
: Retrieves thestd::optional
weight of the edge between two vertices.remove_edge(from, to)
: If present, remove the edge between two vertices.for_edges(from, visitor)
: Applies a callback to all edges starting from a vertex.size()
: Returns the graph's number of vertices and edges.reserve(capacity)
: Reserves memory for the given number of vertices.compact()
: Compacts the memory layout of the graph, preparing for read-intensive workloads.
Results
On Intel Sapphire Rapids CPUs in AWS c7i
instances:
------------------------------------------------------------------------------------------
Benchmark Time CPU Iterations
------------------------------------------------------------------------------------------
graph_make<std::unordered_maps>/min_time:10.000 57329425 ns 57327619 ns 245
graph_make<std::map>/min_time:10.000 109704078 ns 109697310 ns 100
graph_make<absl::flat_set>/min_time:10.000 80598043 ns 80595813 ns 174
graph_rank<std::unordered_maps>/min_time:10.000 35763632 ns 35762406 ns 392
graph_rank<std::map>/min_time:10.000 51658552 ns 51657290 ns 271
graph_rank<absl::flat_set>/min_time:10.000 236938 ns 236933 ns 59137
On AWS Graviton 4 CPUs in AWS r8g
instances:
------------------------------------------------------------------------------------------
Benchmark Time CPU Iterations
------------------------------------------------------------------------------------------
graph_make<std::unordered_maps>/min_time:10.000 163664945 ns 163660572 ns 86
graph_make<std::map>/min_time:10.000 382543113 ns 382534380 ns 45
graph_make<absl::flat_set>/min_time:10.000 213277341 ns 213272284 ns 64
graph_rank<std::unordered_maps>/min_time:10.000 59579530 ns 59578435 ns 240
graph_rank<std::map>/min_time:10.000 69177429 ns 69175965 ns 191
graph_rank<absl::flat_set>/min_time:10.000 186428 ns 186430 ns 74929
v0.4: Pointer tagging 🏷️
This release provides a prototype of a memory-tagging allocator arena, documenting the complexity of using memory tagging techniques even on Linux:
- Intel's Linear Address Masking
- AMD's Upper Address Ignore
- ARM's Top Byte Ignore
- ARM's Memory Tagging Extension
Minor
Patch
v0.3: Gather 🔄 Scatter
This release introduces benchmarks for gather & scatter SIMD rarely-used instructions that can be used to accelerate lookups by ~30% on current x86 and Arm machines.
- Serial
- AVX-512 for x86
- SVE for Arm