A comprehensive collection of metaheuristic optimization algorithms implemented in Rust. This library provides efficient implementations of popular optimization algorithms along with visualization tools.
-
Multiple optimization algorithms:
- Particle Swarm Optimization (PSO)
- Differential Evolution (DE)
- Genetic Algorithm (GA)
- Simulated Annealing (SA)
- Adaptive Chaotic Grey Wolf Optimizer (ACGWO)
- Artificial Bee Colony Optimization (ABCO)
- Grey Wolf Optimizer (GWO)
- Firefly Algorithm (FA)
-
Test functions for benchmarking:
- Sphere Function
- Ackley Function
- Rosenbrock Function
- Rastrigin Function
- Beale Function
- Griewank Function
-
Visualization tools:
- Surface plots
- Contour plots
- Convergence plots
Add this to your Cargo.toml
:
[dependencies]
metaheurustics = "0.2.0"
Here's a simple example using PSO to optimize the Sphere function:
use metaheurustics::prelude::*;
use metaheurustics::algorithm::pso::{PSO, PSOParams};
use metaheurustics::test_function::Sphere;
fn main() {
let sphere = Sphere::new();
let pso_params = PSOParams::default();
let pso = PSO::new(&sphere, pso_params);
let result = pso.optimize();
println!("Best solution: {:?}", result.best_solution);
println!("Best fitness: {}", result.best_fitness);
}
Check out the examples directory for more detailed usage:
examples/plot_all.rs
: Demonstrates visualization of all algorithms on different test functionsexamples/simple_optimization.rs
: Shows basic usage of each optimization algorithm
For detailed documentation, visit docs.rs/metaheurustics
The library includes comprehensive benchmarks comparing the performance of different algorithms on various test functions. Run the benchmarks using:
cargo bench
Contributions are welcome! Please feel free to submit a Pull Request.
This project is licensed under the MIT License - see the LICENSE file for details.