-
Notifications
You must be signed in to change notification settings - Fork 128
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
25efc61
commit 688b670
Showing
4 changed files
with
183 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,6 +1,7 @@ | ||
# author: Arun Ponnusamy | ||
# website: https://www.arunponnusamy.com | ||
|
||
__version__ = "0.1.3" | ||
__version__ = "0.1.6" | ||
|
||
from .face_detection import detect_face | ||
from .face_detection import detect_face | ||
from .object_detection import detect_common_objects |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,136 @@ | ||
import cv2 | ||
import os | ||
import numpy as np | ||
from .utils import download_file | ||
|
||
initialize = True | ||
net = None | ||
dest_dir = os.path.expanduser('~') + os.path.sep + '.cvlib' + os.path.sep + 'object_detection' + os.path.sep + 'yolo' + os.path.sep + 'yolov3' | ||
classes = None | ||
COLORS = np.random.uniform(0, 255, size=(80, 3)) | ||
|
||
def populate_class_labels(): | ||
|
||
class_file_name = 'yolov3_classes.txt' | ||
class_file_abs_path = dest_dir + os.path.sep + class_file_name | ||
url = 'https://github.com/arunponnusamy/object-detection-opencv/raw/master/yolov3.txt' | ||
if not os.path.exists(class_file_abs_path): | ||
download_file(url=url, file_name=class_file_name, dest_dir=dest_dir) | ||
f = open(class_file_abs_path, 'r') | ||
classes = [line.strip() for line in f.readlines()] | ||
|
||
return classes | ||
|
||
|
||
def get_output_layers(net): | ||
|
||
layer_names = net.getLayerNames() | ||
|
||
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()] | ||
|
||
return output_layers | ||
|
||
|
||
def draw_bbox(img, bbox, labels, confidence, colors=None, write_conf=False): | ||
|
||
global COLORS | ||
global classes | ||
|
||
if classes is None: | ||
classes = populate_class_labels() | ||
|
||
for i, label in enumerate(labels): | ||
|
||
if colors is None: | ||
color = COLORS[classes.index(label)] | ||
else: | ||
color = colors[classes.index(label)] | ||
|
||
if write_conf: | ||
label += ' ' + str(format(confidence[i] * 100, '.2f')) + '%' | ||
|
||
cv2.rectangle(img, (bbox[i][0],bbox[i][1]), (bbox[i][2],bbox[i][3]), color, 2) | ||
|
||
cv2.putText(img, label, (bbox[i][0],bbox[i][1]-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) | ||
|
||
return img | ||
|
||
def detect_common_objects(image): | ||
|
||
Height, Width = image.shape[:2] | ||
scale = 0.00392 | ||
|
||
global classes | ||
global dest_dir | ||
|
||
config_file_name = 'yolov3.cfg' | ||
config_file_abs_path = dest_dir + os.path.sep + config_file_name | ||
|
||
weights_file_name = 'yolov3.weights' | ||
weights_file_abs_path = dest_dir + os.path.sep + weights_file_name | ||
|
||
url = 'https://github.com/arunponnusamy/object-detection-opencv/raw/master/yolov3.cfg' | ||
|
||
if not os.path.exists(config_file_abs_path): | ||
download_file(url=url, file_name=config_file_name, dest_dir=dest_dir) | ||
|
||
url = 'https://pjreddie.com/media/files/yolov3.weights' | ||
|
||
if not os.path.exists(weights_file_abs_path): | ||
download_file(url=url, file_name=weights_file_name, dest_dir=dest_dir) | ||
|
||
global initialize | ||
global net | ||
|
||
if initialize: | ||
classes = populate_class_labels() | ||
net = cv2.dnn.readNet(weights_file_abs_path, config_file_abs_path) | ||
initialize = False | ||
|
||
blob = cv2.dnn.blobFromImage(image, scale, (416,416), (0,0,0), True, crop=False) | ||
|
||
net.setInput(blob) | ||
|
||
outs = net.forward(get_output_layers(net)) | ||
|
||
class_ids = [] | ||
confidences = [] | ||
boxes = [] | ||
conf_threshold = 0.5 | ||
nms_threshold = 0.4 | ||
|
||
for out in outs: | ||
for detection in out: | ||
scores = detection[5:] | ||
class_id = np.argmax(scores) | ||
confidence = scores[class_id] | ||
if confidence > 0.5: | ||
center_x = int(detection[0] * Width) | ||
center_y = int(detection[1] * Height) | ||
w = int(detection[2] * Width) | ||
h = int(detection[3] * Height) | ||
x = center_x - w / 2 | ||
y = center_y - h / 2 | ||
class_ids.append(class_id) | ||
confidences.append(float(confidence)) | ||
boxes.append([x, y, w, h]) | ||
|
||
|
||
indices = cv2.dnn.NMSBoxes(boxes, confidences, conf_threshold, nms_threshold) | ||
|
||
bbox = [] | ||
label = [] | ||
conf = [] | ||
|
||
for i in indices: | ||
i = i[0] | ||
box = boxes[i] | ||
x = box[0] | ||
y = box[1] | ||
w = box[2] | ||
h = box[3] | ||
bbox.append([round(x), round(y), round(x+w), round(y+h)]) | ||
label.append(str(classes[class_ids[i]])) | ||
conf.append(confidences[i]) | ||
|
||
return bbox, label, conf |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,43 @@ | ||
import requests | ||
import progressbar as pb | ||
import os | ||
|
||
def download_file(url, file_name, dest_dir): | ||
|
||
if not os.path.exists(dest_dir): | ||
os.makedirs(dest_dir) | ||
|
||
full_path_to_file = dest_dir + os.path.sep + file_name | ||
|
||
if os.path.exists(dest_dir + os.path.sep + file_name): | ||
return full_path_to_file | ||
|
||
print("Downloading " + file_name + " from " + url) | ||
|
||
try: | ||
r = requests.get(url, allow_redirects=True, stream=True) | ||
except: | ||
print("Could not establish connection. Download failed") | ||
return None | ||
|
||
file_size = int(r.headers['Content-Length']) | ||
chunk_size = 1024 | ||
num_bars = round(file_size / chunk_size) | ||
|
||
bar = pb.ProgressBar(maxval=num_bars).start() | ||
|
||
if r.status_code != requests.codes.ok: | ||
print("Error occurred while downloading file") | ||
return None | ||
|
||
count = 0 | ||
|
||
with open(full_path_to_file, 'wb') as file: | ||
for chunk in r.iter_content(chunk_size=chunk_size): | ||
file.write(chunk) | ||
bar.update(count) | ||
count +=1 | ||
|
||
return full_path_to_file | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters