a micro-library for feedforward neural networks that works everywhere:
latest changes
- ✦ for more information on the changes, please take a look at the changelog
- v7: now default exporting mode is json, with optional binary compression for larger neural networks (warning: v8 beta breaking changes due to quantization, only js version)
- v6: dramatically optimized file size; for instance, 18k parameters model was reduced from 376kb to 73kb
- v5: new metadata fields added; removed unnecesary "layers" metadata
- Highly optimized models
- Fast browser inference
- Edge-optimized C++ server
- Fast training with Pytorch
- Simple JavaScript API
// Train in browser
new carbono().layer(2,1).train([{ input:[1,1], output:[0] }])
// Or use PyTorch for larger models
// Then run anywhere - browser, edge, server
cd server
g++ -std=c++17 src/server.cpp -I./include -pthread -o server
./server xor_model.json 8080
# later...
curl -X POST http://localhost:8080/predict \
-H "Content-Type: application/json" \
-d '{"input": [1, 1]}'
# {"output":[0.0009481541869894417]}