Skip to content

Commit

Permalink
Merge pull request #669 from aodn/spike_development
Browse files Browse the repository at this point in the history
SpikeQC Burst Spike functionality, Preview, and small fixes
  • Loading branch information
lbesnard authored Jul 15, 2020
2 parents dd1b85c + 3388992 commit 9a4a551
Show file tree
Hide file tree
Showing 24 changed files with 2,446 additions and 429 deletions.
176 changes: 176 additions & 0 deletions AutomaticQC/SpikeClassifiers/imosSpikeClassifierBurstHampel.m
Original file line number Diff line number Diff line change
@@ -0,0 +1,176 @@
function [spikes] = imosSpikeClassifierBurstHampel(bindexes, signal, use_burst_window, half_window_width, madfactor, lower_mad_limit, repeated_only)
% function [spikes] = imosSpikeClassifierBurstHampel(bindexes, signal, use_burst_window, half_window_width, madfactor, lower_mad_limit, repeated_only)
%
% A Hampel classifier for burst data. The half_window_width is applied at burst level instead of
% sample level.
%
% Inputs:
%
% bindexes - a cell with the invidivudal burst range indexes.
% signal - A Burst 1-d signal.
% use_burst_window - a boolean to consider the half_window_width applied at burst scale. If false, will consider the burst series as continuous.
% half_window_width - The half_window_width burst range (the full window size will be 1+2*half_window_width)
% madfactor - A multipling scale for the MAD.
% repeated_only - a boolean to mark spikes in burst only if they are detected more than one time (only for half_window_width>0).
% lower_mad_limit - a lower threshold for the MAD values, which values below will be ignored.
%
% Outputs:
%
% spikes - An array with spikes indexes.
% fsignal - A filtered signal where the spikes are substituted by median values of the window.
%
% Example:
%
% % simple spikes
% x = randn(1,100)*1e-2;
% spikes = [3,7,33,92,99]
% x(spikes) = 1000;
% bduration = 6;
% v = 1:bduration:length(x)+bduration;
% for k=1:length(v)-1;
% bind{k} = [v(k),min(v(k+1)-1,length(x))];
% end
% [dspikes] = imosSpikeClassifierBurstHampel(bind,x);
% assert(isequal(dspikes,spikes));
% % equal to Hampel
% [dspikes] = imosSpikeClassifierBurstHampel(bind,x,length(bind));
% [dspikes2] = imosSpikeClassifierHampel(x,length(bind));
% assert(isequal(dspikes,spikes));
% assert(isequal(dspikes,dspikes2));
%
% % detecting entire burst as spike
% x = randn(1,100)*1e-2;
% fullburst_spiked = [3,7,13,14,15,16,17,18,33,92,99]
% x(fullburst_spiked) = 1000;
% [dspikes] = imosSpikeClassifierBurstHampel(bind,x);
% assert(isequal(dspikes,[3,7,33,92,99]));
% [dspikes2] = imosSpikeClassifierBurstHampel(bind,x,true,2);
% assert(isequal(dspikes2,fullburst_spiked))
%
%
% author: [email protected]
%

% Copyright (C) 2020, Australian Ocean Data Network (AODN) and Integrated
% Marine Observing System (IMOS).
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation version 3 of the License.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program.
% If not, see <https://www.gnu.org/licenses/gpl-3.0.en.html>.
%

narginchk(2, 7)

if nargin == 2
use_burst_window = 0;
half_window_width = 1;
madfactor = 5;
lower_mad_limit = 0;
repeated_only = false;
elseif nargin == 3
half_window_width = 1;
madfactor = 5;
lower_mad_limit = 0;
repeated_only = false;
elseif nargin == 4
madfactor = 5;
lower_mad_limit = 0;
repeated_only = false;
elseif nargin == 5
lower_mad_limit = 0;
repeated_only = false;
elseif nargin == 6
repeated_only = false;
end

if ~use_burst_window
if half_window_width == 0
half_window_width = 1;
end
spikes = imosSpikeClassifierHampel(signal,half_window_width,madfactor,lower_mad_limit);
return
end

nbursts = double(half_window_width) .* 2 + 1;
burst_is_series = nbursts >= length(bindexes);
if burst_is_series
spikes = imosSpikeClassifierHampel(signal, ceil(length(signal)/2+1), madfactor,lower_mad_limit);
return
end

spikes = NaN(size(signal));
%left bry
bs = 1;
range = 1:bindexes{nbursts}(end);
[bspikes] = imosSpikeClassifierHampel(signal(range), length(range), madfactor,lower_mad_limit);

if ~isempty(bspikes)
blen = length(bspikes);
spikes(bs:bs + blen - 1) = bspikes;
bs = bs + blen;
end

h=[];
series_end_at_next_window = nbursts+1 >= length(bindexes)-nbursts;
if series_end_at_next_window
bie = bindexes{nbursts+1}(1);
else
sburst = 1;
ni = nbursts+1;
ne = length(bindexes)-nbursts;
h=waitbar(0,'Computing Spikes');
wbval=0;
wbint=0.05;
for eburst = ni:ne
if eburst/ne > (wbval+wbint)
wbval = wbval+wbint;
waitbar(eburst/ne,h,'Computing Spikes');
end
sburst = sburst + 1;
bis = bindexes{sburst}(1);
bie = bindexes{eburst}(end);
csignal = signal(bis:bie);
[bspikes] = imosSpikeClassifierHampel(csignal, length(csignal), madfactor,lower_mad_limit);

if ~isempty(bspikes)
blen = length(bspikes);
spikes(bs:bs + blen - 1) = bspikes + bis - 1;
bs = bs + blen;
end

end
end
if ~isempty(h)
h.delete()
end
%right bry
range = bie + 1:bindexes{end}(end);
[bspikes] = imosSpikeClassifierHampel(signal(range), length(range), madfactor,lower_mad_limit);

if ~isempty(bspikes)
blen = length(bspikes);
spikes(bs:bs + blen - 1) = bspikes + bie;
end

spikes = spikes(~isnan(spikes));
if repeated_only
srange = min(spikes)-1:max(spikes)+1;
candidates = find(histcounts(spikes,srange)>1);
if ~isempty(candidates)
spikes = candidates;
end
else
spikes = unique(spikes);
end


end
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
function [spikes] = imosSpikeClassifierBurstRunningStats(bindexes, signal, scalefun, dispersionfun, dispersion_factor)
% function [spikes] = imosSpikeClassifierBurstRunningStats(bindexes, signal, scalefun, dispersionfun, dispersion_factor)
%
% A simple thresholding method based on user defined deviations around a central scale. Values above
% the dispersion will be tagged.
%
% Inputs:
%
% bindexes - a cell with the invidivudal burst range indexes.
% signal - A Burst 1-d signal.
% scalefun - the function to estimate the centre of the distribution. (e.g. mean or median)
% Default: @mean
% dispersionfun - the function to estimate the dispersion (e.g. std, mean_absolute_deviation, median_absolute_deviation)
% Default: @std
% dispersion_factor - the multiplying factor for the dispersion.
% Default: 2
%
% Outputs:
%
% spikes - An array with spikes indexes.
% cscale - the computed scale
% cdispersion - the computed dispersion (scaled).
%
% Example:
% z = randn(1,10);
% z(10) = 10000;
% [spikes] = imosSpikeClassifierRunningStats(z,@mean,@std,2);
% assert(spikes(10)==1)
% assert(spikes(1:9)==0)
%
% author: [email protected]
%

% Copyright (C) 2020, Australian Ocean Data Network (AODN) and Integrated
% Marine Observing System (IMOS).
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation version 3 of the License.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program.
% If not, see <https://www.gnu.org/licenses/gpl-3.0.en.html>.
%
narginchk(2,5)
if nargin==2
scalefun = @nanmean;
dispersionfun = @nanstd;
dispersion_factor = 2;
elseif nargin == 3
dispersionfun = @nanstd;
dispersion_factor = 2;
elseif nargin == 4
dispersion_factor = 2;
end

spikes = NaN(size(signal));
ne = length(bindexes);

h=waitbar(0,'Computing Spikes');
wbval=0;
wbint=0.05;
for k=1:ne
if k/ne > (wbval+wbint)
wbval=wbval+wbint;
waitbar(k/ne,h,'Computing Spikes');
end
brange = bindexes{k};
xs = brange(1);
xe = brange(2);
bspikes = imosSpikeClassifierRunningStats(signal(xs:xe),scalefun,dispersionfun,dispersion_factor);
if ~isempty(bspikes)
spikes(xs:xs+length(bspikes)-1) = bspikes+xs-1;
end
end
h.delete();
spikes = unique(spikes(~isnan(spikes)));
end
41 changes: 21 additions & 20 deletions AutomaticQC/SpikeClassifiers/imosSpikeClassifierHampel.m
Original file line number Diff line number Diff line change
@@ -1,30 +1,25 @@
function [spikes, fsignal] = imosSpikeClassifierHampel(signal, window, stdfactor)
% function spikes, fsignal = imosSpikeClassifierHampel(signal, window, stdfactor)
function [spikes, fsignal] = imosSpikeClassifierHampel(signal, half_window_width, madfactor, lower_mad_limit)
% function spikes, fsignal = imosSpikeClassifierHampel(signal, half_window_width, madfactor, lower_mad_limit)
%
% A wrapper to Hampel, a median windowed filter, for both
% Burst and Equally spaced time series.
%
% The hampel method is a robust parametric denoising filter that uses
% the MAD deviation (scaled) from the median in a pre-defined
% indexed centred window.
% A wrapper to Hampel classifier.The hampel method is a robust parametric denoising filter that uses
% the MAD deviation (scaled) from the median in a pre-defined centred window.
%
% See also hampel.m.
%
% Inputs:
%
% signal - A 1-d signal.
% window - A window index range. If signal is in burst mode, this is ignored.
% stdfactor - A multiplying scale for the standard deviation.
% half_window_width - A half_window_width index range (the full window size will be 1+2*half_window_width)
% madfactor - A multiplying scale for the standard deviation.
% lower_mad_limit - a lower threshold for the MAD values, which values below will be ignored.
%
% Outputs:
%
% spikes - An array with spikes indexes.
% fsignal - A filtered signal where the spikes are subsituted
% by the median of the window.
% fsignal - A filtered signal where the spikes are substituted by median values of the window.
%
% Example:
%
%
% author: [email protected]
%

Expand All @@ -44,14 +39,20 @@
% along with this program.
% If not, see <https://www.gnu.org/licenses/gpl-3.0.en.html>.
%
narginchk(1, 4)

if nargin < 3
window = 3;
stdfactor = 10;
elseif nargin < 2
stdfactor = 10;
if nargin == 1
half_window_width = 3;
madfactor = 10;
lower_mad_limit = 0.0;
elseif nargin == 2
madfactor = 10;
lower_mad_limit = 0.0;
elseif nargin == 3
lower_mad_limit = 0.0;
end

[fsignal, bind, ~, ~] = hampel(signal, window, stdfactor);
spikes = find(bind);
[fsignal, bind, ~, smad] = hampel(signal, half_window_width, madfactor);
above_limit = smad > lower_mad_limit;
spikes = find(bind .* above_limit);
end
Loading

0 comments on commit 9a4a551

Please sign in to comment.