-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
892543e
commit a280b78
Showing
1 changed file
with
160 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,160 @@ | ||
get_prediction_plot <- function(Data=NULL, | ||
path_db, | ||
rat_studies=FALSE, | ||
studyid_metadata=NULL, | ||
fake_study = FALSE, | ||
use_xpt_file = FALSE, | ||
Round = FALSE, | ||
Impute = FALSE, | ||
reps, | ||
holdback, | ||
Undersample = FALSE, | ||
hyperparameter_tuning = FALSE, | ||
error_correction_method, | ||
testReps){ | ||
|
||
|
||
if(is.null(Data)){ | ||
data_and_best.m <- get_Data_formatted_for_ml_and_best.m(path_db=path_db, | ||
rat_studies=rat_studies, | ||
studyid_metadata=studyid_metadata, | ||
fake_study = fake_study, | ||
use_xpt_file = use_xpt_file, | ||
Round = Round, | ||
Impute = Impute, | ||
reps=reps, | ||
holdback=holdback, | ||
Undersample = Undersample, | ||
hyperparameter_tuning = hyperparameter_tuning, | ||
error_correction_method=error_correction_method) # = must be 'Flip' or "Prune' or 'None' | ||
|
||
} | ||
|
||
Data <- data_and_best.m[["Data"]] | ||
best.m <- data_and_best.m[["best.m"]] | ||
|
||
|
||
|
||
|
||
rfData <- Data | ||
#--------------------------------------------------------------------- | ||
# Initialize model performance metric trackers------------------------ | ||
#--------------------------------------------------------------------- | ||
|
||
# custom function definition | ||
`%ni%` <- Negate('%in%') | ||
|
||
Sensitivity <- NULL | ||
Specificity <- NULL | ||
PPV <- NULL | ||
NPV <- NULL | ||
Prevalence <- NULL | ||
Accuracy <- NULL | ||
#nRemoved <- NULL | ||
|
||
|
||
#-----------------doing cross-validation-------------------------- | ||
#----------------------------------------------------------------- | ||
#------------------------------------------------------------------ | ||
|
||
#-----create and prepare "`rfTestData data` frame" for storing predictions---- | ||
rfTestData <- rfData | ||
|
||
#replaces the existing column names with simple numeric identifiers | ||
colnames(rfTestData) <- seq(ncol(rfTestData)) | ||
|
||
#emptying the data frame. | ||
for (j in seq(ncol(rfTestData))) { | ||
rfTestData[,j] <- NA | ||
} | ||
|
||
#prepares rfTestData to maintain a consistent structure with the necessary | ||
#columns for storing predictions in subsequent iterations of the loop | ||
rfTestData <- rfTestData[,1:2] # Keep structure for predictions | ||
|
||
#remove 'gini' from the previous iteration | ||
#if (exists('gini')) {rm(gini)} | ||
|
||
|
||
#------------------------------------------------------------------- | ||
# model building and testing---------------------------------------- | ||
#------------------------------------------------------------------- | ||
|
||
|
||
# Iterate through test repetitions---------------------------------- | ||
for (i in seq(testReps)) { | ||
if (i == 1) { | ||
sampleIndicies <- seq(nrow(rfData)) | ||
} | ||
if (i < testReps) { | ||
ind <- sample(seq(nrow(rfData)), floor((nrow(rfData)/testReps)-1), replace = F) | ||
sampleIndicies <- sampleIndicies[which(sampleIndicies %ni% ind)] | ||
} else { | ||
ind <- sampleIndicies | ||
} | ||
|
||
trainIndex <- which(seq(nrow(rfData)) %ni% ind) | ||
testIndex <- ind | ||
|
||
# ind <- sample(2, nrow(rfData), replace = T, prob = c((1- testHoldBack), testHoldBack)) | ||
train <- rfData[trainIndex,] | ||
|
||
#train_data_two <- train | ||
|
||
test <- rfData[testIndex,] | ||
|
||
# rfAll <- randomForest::randomForest(Target_Organ ~ ., data=rfData, mytry = best.m, | ||
# importance = F, ntree = 500, proximity = T) | ||
|
||
|
||
# Perform under sampling if enabled | ||
if (Undersample == T) { | ||
posIndex <- which(train[,1] == 1) | ||
nPos <- length(posIndex) | ||
# trainIndex <- c(posIndex, sample(which(train[,1] == 0), nPos, replace = F)) | ||
trainIndex <- c(posIndex, sample(which(train[,1] == 0), nPos, replace = T)) | ||
train <- train[trainIndex,] | ||
test <- rbind(train[-trainIndex,], test) | ||
} | ||
|
||
#train_data_two <- train | ||
|
||
|
||
#model building with current iteration train data | ||
# Train Random Forest model-------------------------------------------- | ||
rf <- randomForest::randomForest(Target_Organ ~ ., data=train, mytry = best.m, | ||
importance = T, ntree = 500, proximity = T) | ||
|
||
print(rf) | ||
|
||
#---------------------------------------------------------------------- | ||
#predictions with current model with current test data | ||
# @___________________this_line_has_problems_______ | ||
# Predict probabilities on test data | ||
#---------------------------------------------------------------------- | ||
|
||
p2r <- stats::predict(rf, test, type = 'prob')[,1] | ||
|
||
#Store these predictions in a structured data frame | ||
rfTestData[names(p2r), i] <- as.numeric(p2r) | ||
|
||
#Rounding the Predictions: | ||
p2r <- round(p2r) | ||
} | ||
|
||
|
||
#------------------------------------------------------- | ||
histoData <- as.data.frame(cbind(rowMeans(rfTestData, na.rm = T), rfData[,1])) | ||
histoData[which(histoData[,2] == 1), 2] <- 'Y' | ||
histoData[which(histoData[,2] == 2), 2] <- 'N' | ||
colnames(histoData) <- c('Probability', 'LIVER') | ||
|
||
H <- p <- histoData %>% | ||
ggplot2::ggplot( ggplot2::aes(x=Probability, fill=LIVER)) + | ||
ggplot2::geom_histogram( color="#e9ecef", alpha=0.6, position = 'identity') + | ||
ggplot2::scale_fill_manual(values=c("#69b3a2", "#404080")) + | ||
ggplot2::labs(fill = "LIVER", x = "Model Prediction P(LIVER)", y = "Count") | ||
|
||
print(H) | ||
|
||
} |