Skip to content

Commit

Permalink
[no ci] docs
Browse files Browse the repository at this point in the history
  • Loading branch information
amaiya committed Mar 22, 2023
1 parent f77c128 commit e8bd20c
Show file tree
Hide file tree
Showing 7 changed files with 199 additions and 150 deletions.
62 changes: 34 additions & 28 deletions docs/graph/predictor.html
Original file line number Diff line number Diff line change
Expand Up @@ -52,10 +52,12 @@ <h1 class="title">Module <code>ktrain.graph.predictor</code></h1>
def get_classes(self):
return self.c

def predict(self, node_ids, return_proba=False):
return self.predict_transductive(node_ids, return_proba=return_proba)
def predict(self, node_ids, return_proba=False, verbose=0):
return self.predict_transductive(
node_ids, return_proba=return_proba, verbose=verbose
)

def predict_transductive(self, node_ids, return_proba=False):
def predict_transductive(self, node_ids, return_proba=False, verbose=0):
&#34;&#34;&#34;
```
Performs transductive inference.
Expand All @@ -66,11 +68,11 @@ <h1 class="title">Module <code>ktrain.graph.predictor</code></h1>
gen.batch_size = self.batch_size
# *_generator methods are deprecated from TF 2.1.0
# preds = self.model.predict_generator(gen)
preds = self.model.predict(gen)
preds = self.model.predict(gen, verbose=verbose)
result = preds if return_proba else [self.c[np.argmax(pred)] for pred in preds]
return result

def predict_inductive(self, df, G, return_proba=False):
def predict_inductive(self, df, G, return_proba=False, verbose=0):
&#34;&#34;&#34;
```
Performs inductive inference.
Expand All @@ -82,7 +84,7 @@ <h1 class="title">Module <code>ktrain.graph.predictor</code></h1>
gen.batch_size = self.batch_size
# *_generator methods are deprecated from TF 2.1.0
# preds = self.model.predict_generator(gen)
preds = self.model.predict(gen)
preds = self.model.predict(gen, verbose=verbose)
result = preds if return_proba else [self.c[np.argmax(pred)] for pred in preds]
return result

Expand All @@ -107,7 +109,7 @@ <h1 class="title">Module <code>ktrain.graph.predictor</code></h1>
def get_classes(self):
return self.c

def predict(self, G, edge_ids, return_proba=False):
def predict(self, G, edge_ids, return_proba=False, verbose=0):
&#34;&#34;&#34;
```
Performs link prediction
Expand All @@ -118,7 +120,7 @@ <h1 class="title">Module <code>ktrain.graph.predictor</code></h1>
gen.batch_size = self.batch_size
# *_generator methods are deprecated from TF 2.1.0
# preds = self.model.predict_generator(gen)
preds = self.model.predict(gen)
preds = self.model.predict(gen, verbose=verbose)
preds = np.squeeze(preds)
if return_proba:
return [[1 - pred, pred] for pred in preds]
Expand Down Expand Up @@ -166,7 +168,7 @@ <h2 class="section-title" id="header-classes">Classes</h2>
def get_classes(self):
return self.c

def predict(self, G, edge_ids, return_proba=False):
def predict(self, G, edge_ids, return_proba=False, verbose=0):
&#34;&#34;&#34;
```
Performs link prediction
Expand All @@ -177,7 +179,7 @@ <h2 class="section-title" id="header-classes">Classes</h2>
gen.batch_size = self.batch_size
# *_generator methods are deprecated from TF 2.1.0
# preds = self.model.predict_generator(gen)
preds = self.model.predict(gen)
preds = self.model.predict(gen, verbose=verbose)
preds = np.squeeze(preds)
if return_proba:
return [[1 - pred, pred] for pred in preds]
Expand Down Expand Up @@ -205,7 +207,7 @@ <h3>Methods</h3>
</details>
</dd>
<dt id="ktrain.graph.predictor.LinkPredictor.predict"><code class="name flex">
<span>def <span class="ident">predict</span></span>(<span>self, G, edge_ids, return_proba=False)</span>
<span>def <span class="ident">predict</span></span>(<span>self, G, edge_ids, return_proba=False, verbose=0)</span>
</code></dt>
<dd>
<div class="desc"><pre><code>Performs link prediction
Expand All @@ -215,7 +217,7 @@ <h3>Methods</h3>
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def predict(self, G, edge_ids, return_proba=False):
<pre><code class="python">def predict(self, G, edge_ids, return_proba=False, verbose=0):
&#34;&#34;&#34;
```
Performs link prediction
Expand All @@ -226,7 +228,7 @@ <h3>Methods</h3>
gen.batch_size = self.batch_size
# *_generator methods are deprecated from TF 2.1.0
# preds = self.model.predict_generator(gen)
preds = self.model.predict(gen)
preds = self.model.predict(gen, verbose=verbose)
preds = np.squeeze(preds)
if return_proba:
return [[1 - pred, pred] for pred in preds]
Expand Down Expand Up @@ -278,10 +280,12 @@ <h3>Inherited members</h3>
def get_classes(self):
return self.c

def predict(self, node_ids, return_proba=False):
return self.predict_transductive(node_ids, return_proba=return_proba)
def predict(self, node_ids, return_proba=False, verbose=0):
return self.predict_transductive(
node_ids, return_proba=return_proba, verbose=verbose
)

def predict_transductive(self, node_ids, return_proba=False):
def predict_transductive(self, node_ids, return_proba=False, verbose=0):
&#34;&#34;&#34;
```
Performs transductive inference.
Expand All @@ -292,11 +296,11 @@ <h3>Inherited members</h3>
gen.batch_size = self.batch_size
# *_generator methods are deprecated from TF 2.1.0
# preds = self.model.predict_generator(gen)
preds = self.model.predict(gen)
preds = self.model.predict(gen, verbose=verbose)
result = preds if return_proba else [self.c[np.argmax(pred)] for pred in preds]
return result

def predict_inductive(self, df, G, return_proba=False):
def predict_inductive(self, df, G, return_proba=False, verbose=0):
&#34;&#34;&#34;
```
Performs inductive inference.
Expand All @@ -308,7 +312,7 @@ <h3>Inherited members</h3>
gen.batch_size = self.batch_size
# *_generator methods are deprecated from TF 2.1.0
# preds = self.model.predict_generator(gen)
preds = self.model.predict(gen)
preds = self.model.predict(gen, verbose=verbose)
result = preds if return_proba else [self.c[np.argmax(pred)] for pred in preds]
return result</code></pre>
</details>
Expand All @@ -333,20 +337,22 @@ <h3>Methods</h3>
</details>
</dd>
<dt id="ktrain.graph.predictor.NodePredictor.predict"><code class="name flex">
<span>def <span class="ident">predict</span></span>(<span>self, node_ids, return_proba=False)</span>
<span>def <span class="ident">predict</span></span>(<span>self, node_ids, return_proba=False, verbose=0)</span>
</code></dt>
<dd>
<div class="desc"></div>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def predict(self, node_ids, return_proba=False):
return self.predict_transductive(node_ids, return_proba=return_proba)</code></pre>
<pre><code class="python">def predict(self, node_ids, return_proba=False, verbose=0):
return self.predict_transductive(
node_ids, return_proba=return_proba, verbose=verbose
)</code></pre>
</details>
</dd>
<dt id="ktrain.graph.predictor.NodePredictor.predict_inductive"><code class="name flex">
<span>def <span class="ident">predict_inductive</span></span>(<span>self, df, G, return_proba=False)</span>
<span>def <span class="ident">predict_inductive</span></span>(<span>self, df, G, return_proba=False, verbose=0)</span>
</code></dt>
<dd>
<div class="desc"><pre><code>Performs inductive inference.
Expand All @@ -356,7 +362,7 @@ <h3>Methods</h3>
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def predict_inductive(self, df, G, return_proba=False):
<pre><code class="python">def predict_inductive(self, df, G, return_proba=False, verbose=0):
&#34;&#34;&#34;
```
Performs inductive inference.
Expand All @@ -368,13 +374,13 @@ <h3>Methods</h3>
gen.batch_size = self.batch_size
# *_generator methods are deprecated from TF 2.1.0
# preds = self.model.predict_generator(gen)
preds = self.model.predict(gen)
preds = self.model.predict(gen, verbose=verbose)
result = preds if return_proba else [self.c[np.argmax(pred)] for pred in preds]
return result</code></pre>
</details>
</dd>
<dt id="ktrain.graph.predictor.NodePredictor.predict_transductive"><code class="name flex">
<span>def <span class="ident">predict_transductive</span></span>(<span>self, node_ids, return_proba=False)</span>
<span>def <span class="ident">predict_transductive</span></span>(<span>self, node_ids, return_proba=False, verbose=0)</span>
</code></dt>
<dd>
<div class="desc"><pre><code>Performs transductive inference.
Expand All @@ -384,7 +390,7 @@ <h3>Methods</h3>
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def predict_transductive(self, node_ids, return_proba=False):
<pre><code class="python">def predict_transductive(self, node_ids, return_proba=False, verbose=0):
&#34;&#34;&#34;
```
Performs transductive inference.
Expand All @@ -395,7 +401,7 @@ <h3>Methods</h3>
gen.batch_size = self.batch_size
# *_generator methods are deprecated from TF 2.1.0
# preds = self.model.predict_generator(gen)
preds = self.model.predict(gen)
preds = self.model.predict(gen, verbose=verbose)
result = preds if return_proba else [self.c[np.argmax(pred)] for pred in preds]
return result</code></pre>
</details>
Expand Down
18 changes: 11 additions & 7 deletions docs/tabular/predictor.html
Original file line number Diff line number Diff line change
Expand Up @@ -55,13 +55,14 @@ <h1 class="title">Module <code>ktrain.tabular.predictor</code></h1>
def get_classes(self):
return self.c

def predict(self, df, return_proba=False):
def predict(self, df, return_proba=False, verbose=0):
&#34;&#34;&#34;
```
Makes predictions for a test dataframe
Args:
df(pd.DataFrame): a pandas DataFrame in same format as DataFrame used for training model
return_proba(bool): If True, return probabilities instead of predicted class labels
verbose(int): verbosity: 0 (silent), 1 (progress bar), 2 (single line)
```
&#34;&#34;&#34;
if not isinstance(df, pd.DataFrame):
Expand All @@ -73,7 +74,7 @@ <h1 class="title">Module <code>ktrain.tabular.predictor</code></h1>
# get predictions
tseq = self.preproc.preprocess_test(df, verbose=0)
tseq.batch_size = self.batch_size
preds = self.model.predict(tseq)
preds = self.model.predict(tseq, verbose=verbose)
result = (
preds
if return_proba or multilabel or not self.c
Expand Down Expand Up @@ -248,13 +249,14 @@ <h2 class="section-title" id="header-classes">Classes</h2>
def get_classes(self):
return self.c

def predict(self, df, return_proba=False):
def predict(self, df, return_proba=False, verbose=0):
&#34;&#34;&#34;
```
Makes predictions for a test dataframe
Args:
df(pd.DataFrame): a pandas DataFrame in same format as DataFrame used for training model
return_proba(bool): If True, return probabilities instead of predicted class labels
verbose(int): verbosity: 0 (silent), 1 (progress bar), 2 (single line)
```
&#34;&#34;&#34;
if not isinstance(df, pd.DataFrame):
Expand All @@ -266,7 +268,7 @@ <h2 class="section-title" id="header-classes">Classes</h2>
# get predictions
tseq = self.preproc.preprocess_test(df, verbose=0)
tseq.batch_size = self.batch_size
preds = self.model.predict(tseq)
preds = self.model.predict(tseq, verbose=verbose)
result = (
preds
if return_proba or multilabel or not self.c
Expand Down Expand Up @@ -554,25 +556,27 @@ <h3>Methods</h3>
</details>
</dd>
<dt id="ktrain.tabular.predictor.TabularPredictor.predict"><code class="name flex">
<span>def <span class="ident">predict</span></span>(<span>self, df, return_proba=False)</span>
<span>def <span class="ident">predict</span></span>(<span>self, df, return_proba=False, verbose=0)</span>
</code></dt>
<dd>
<div class="desc"><pre><code>Makes predictions for a test dataframe
Args:
df(pd.DataFrame): a pandas DataFrame in same format as DataFrame used for training model
return_proba(bool): If True, return probabilities instead of predicted class labels
verbose(int): verbosity: 0 (silent), 1 (progress bar), 2 (single line)
</code></pre></div>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def predict(self, df, return_proba=False):
<pre><code class="python">def predict(self, df, return_proba=False, verbose=0):
&#34;&#34;&#34;
```
Makes predictions for a test dataframe
Args:
df(pd.DataFrame): a pandas DataFrame in same format as DataFrame used for training model
return_proba(bool): If True, return probabilities instead of predicted class labels
verbose(int): verbosity: 0 (silent), 1 (progress bar), 2 (single line)
```
&#34;&#34;&#34;
if not isinstance(df, pd.DataFrame):
Expand All @@ -584,7 +588,7 @@ <h3>Methods</h3>
# get predictions
tseq = self.preproc.preprocess_test(df, verbose=0)
tseq.batch_size = self.batch_size
preds = self.model.predict(tseq)
preds = self.model.predict(tseq, verbose=verbose)
result = (
preds
if return_proba or multilabel or not self.c
Expand Down
1 change: 0 additions & 1 deletion docs/text/ner/anago/preprocessing.html
Original file line number Diff line number Diff line change
Expand Up @@ -790,7 +790,6 @@ <h3>Ancestors</h3>
<ul class="hlist">
<li>sklearn.base.BaseEstimator</li>
<li>sklearn.base.TransformerMixin</li>
<li>sklearn.utils._set_output._SetOutputMixin</li>
</ul>
<h3>Static methods</h3>
<dl>
Expand Down
Loading

0 comments on commit e8bd20c

Please sign in to comment.