Skip to content

Commit

Permalink
Finish siam slides
Browse files Browse the repository at this point in the history
  • Loading branch information
alexhernandezgarcia committed May 22, 2024
1 parent df2b17b commit 967d6d1
Showing 1 changed file with 16 additions and 5 deletions.
21 changes: 16 additions & 5 deletions slides/siam-may24.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,8 @@ class: title, middle
## Crystal-GFN
### Sampling crystals with desirable properties and constraints

Presenting: Alex Hernández-García (he/il/él)

Mila AI4Science: Alex Hernandez-Garcia, Alexandre Duval, Alexandra Volokhova, Yoshua Bengio, Divya Sharma, Pierre Luc Carrier, Yasmine Benabed, Michał Koziarski, Victor Schmidt, Pierre-Paul De Breuck

.turquoise[SIAM Conference on Mathematical Aspects of Materials Science ([MS24](https://www.siam.org/conferences/cm/conference/ms24)), May 22th 2024]
Expand Down Expand Up @@ -173,7 +175,11 @@ Instead of optimising the atom positions by learning from a small data set, we d
---

## GFlowNets as the generative framework
### 3 key ingredients
### A brief introduction

--

#### 3 key ingredients

--

Expand Down Expand Up @@ -681,6 +687,7 @@ Bengio et al. [Flow network based generative models for non-iterative diverse ca

.context[Compositional generation of crystals in the space of crystallographic properties.]

<br>
.center[![:scale 100%](../assets/images/slides/crystals/crystalgfn_init.png)]

---
Expand All @@ -691,6 +698,7 @@ count: false

.context[Compositional generation of crystals in the space of crystallographic properties.]

<br>
.center[![:scale 100%](../assets/images/slides/crystals/crystalgfn_sg.png)]

---
Expand All @@ -701,6 +709,7 @@ count: false

.context[Compositional generation of crystals in the space of crystallographic properties.]

<br>
.center[![:scale 100%](../assets/images/slides/crystals/crystalgfn_sg_output.png)]

---
Expand All @@ -711,6 +720,7 @@ count: false

.context[Compositional generation of crystals in the space of crystallographic properties.]

<br>
.center[![:scale 100%](../assets/images/slides/crystals/crystalgfn_comp.png)]

---
Expand All @@ -721,6 +731,7 @@ count: false

.context[Compositional generation of crystals in the space of crystallographic properties.]

<br>
.center[![:scale 100%](../assets/images/slides/crystals/crystalgfn_comp_output.png)]

---
Expand All @@ -731,6 +742,7 @@ count: false

.context[Compositional generation of crystals in the space of crystallographic properties.]

<br>
.center[![:scale 100%](../assets/images/slides/crystals/crystalgfn_lp.png)]

---
Expand All @@ -741,6 +753,7 @@ count: false

.context[Compositional generation of crystals in the space of crystallographic properties.]

<br>
.center[![:scale 100%](../assets/images/slides/crystals/crystalgfn_lp_output.png)]

---
Expand All @@ -751,6 +764,7 @@ count: false

.context[Compositional generation of crystals in the space of crystallographic properties.]

<br>
.center[![:scale 100%](../assets/images/slides/crystals/crystalgfn_all.png)]

---
Expand All @@ -761,6 +775,7 @@ count: false

.context[Compositional generation of crystals in the space of crystallographic properties.]

<br>
.center[![:scale 100%](../assets/images/slides/crystals/crystalgfn_all.png)]

.conclusion[Crystal-GFN binds multiple spaces representing crystallographic and material properties, setting intra- and inter-space hard constraints in the generation process.]
Expand Down Expand Up @@ -801,10 +816,6 @@ We have tested the following properties:
- .highlight1[Electronic band gap] [eV] (squared distance to a target value, 1.34 eV), via a pre-trained machine learning model.
- .highlight1[Unit cell density] [g/cm<sup>3</sup>], calculated _exactly_ from the GFN outputs.

--

.highlight1[Coming soon]: pre-trained machine learning model to predict the ionic conductivity [S/cm].

---

## Crystal-GFlowNet
Expand Down

0 comments on commit 967d6d1

Please sign in to comment.