GHOSTZ-GPU is a homology search tool which can detect remote homologues like BLAST and is about 5-7 times more efficient than GHOSTZ by using GHOSTZ.
GHOSTZ-GPU outputs search results in the format similar to BLAST-tabular format.
- gcc => 4.3
- Boost >= 1.55.0
- CUDA >= 6.0
- Download the archive of GHOSTZ-GPU from this repository.
- Extract the archive and cd into the extracted directory.
- Run make command.
- Copy
ghostz-gpu
binary file to any directory you like.
Commands:
$ tar xvzf ghostz-gpu.tar.gz
$ cd ghostz-gpu
$ make BOOST_PATH=Boost CUDA_TOOLKIT_PATH=CUDA
$ cp ghostz-gpu /AS/YOU/LIKE/
Boost and CUDA are directories where they are installed, respectively.
GHOSTZ-GPU requires specifically formatted database files for homology search. These files can be generated from FASTA formatted DNA/protein sequence files.
Users have to prepare a database file in FASTA format and convert it into GHOSTZ-GPU format database files by using GHOSTZ-GPU db
command at first. GHOSTZ-GPU db
command requires 2 args ([-i dbFastaFile]
and [-o dbName]
). GHOSTZ-GPU db
command divides a database FASTA file into several database chunks and generates several files (.inf, .ind, .nam, .pos, .seq). All generated files are needed for the search. Users can specify the size of each chunk. Smaller chunk size requires smaller memory, but efficiency of the search will decrease.
For executing homology search, GHOSTZ-GPU aln
command is used and that command requires at least 2 args ([-i qryName]
and [-d dbName]
).
$ ghostz-gpu db -i ./data/db.fasta -o exdb
$ ghostz-gpu aln -q d -t p -i ./data/queries.fasta -d exdb -o exout
db
: convert a FASTA file to GHOSTZ format database files
ghostz-gpu db [-i dbFastaFile] [-o dbName] [-C clustering][-l chunkSize]
[-L clusteringSubsequenceLength] [-s seedThreshold]
Options:
(Required)
-i STR Protein sequences in FASTA format for a database
-o STR The name of the database
(Optional)
-C STR Clustering, T (enable) or F (disable) [T]
-l INT Chunk size of the database (bytes) [1073741824 (=1GB)]
-L INT Length of a subsequence for clustering [10]
-s INT The seed threshold [39]
-a INT The number of threads [1]
aln
: Search homologues of queries from database
ghostz-gpu aln [-i queries] [-o output] [-d database] [-v maxNumAliSub]
[-b maxNumAliQue] [-h hitsSize] [-l queriesChunkSize] [-q queryType]
[-t databaseType] [-F filter] [-a numThreads] [-g numGPUs]
Options:
(Required)
-i STR Sequences in FASTA format
-o STR Output file
-d STR database name (must be formatted)
(Optional)
-v INT Maximum number of alignments for each subject [1]
-b INT Maximum number of the output for a query [10]
-l INT Chunk size of the queries (bytes) [134217728 (=128MB)]
-q STR Query sequence type, p (protein) or d (dna) [p]
-t STR Database sequence type, p (protein) or d (dna) [p]
-F STR Filter query sequence, T (enable) or F (disable) [T]
-a INT The number of threads [1]
-g INT The number of GPUs [the number of available GPUs]
GHOSTZ-GPU outputs the tab-deliminated file as search results.
Example)
query0 subject0 100 25 0 0 1 75 1 25 2.75456e-15 60.4622
query0 subject6 100 10 0 0 46 75 16 25 2.58417e-05 27.335
query1 subject0 100 24 0 0 2 73 1 24 1.36707e-14 58.151
query1 subject6 100 9 0 0 47 73 16 24 0.000128251 25.0238
query3 subject6 100 14 0 0 34 75 12 25 3.60591e-07 33.4982
query3 subject0 100 10 0 0 46 75 16 25 2.58417e-05 27.335
query4 subject6 100 14 0 0 42 1 12 25 3.60591e-07 33.4982
query4 subject0 100 10 0 0 30 1 16 25 2.58417e-05 27.335
Each column shows;
- Name of a query sequence
- Name of a homologue sequence (subject)
- Sequence Identity
- Alignment length
- The number of mismatches in the alignment
- The number of gap openingsin the alignemt
- Start position of the query in the alignment
- End position of the query in the alignemnt
- Start position of the subject in the alignment
- End position of the subject in the alignment
- E-value
- Normalized score
Shuji Suzuki, Masanori Kakuta, Takashi Ishida, Yutaka Akiyama. "GPU-Acceleration of Sequence Homology Searches with Database Subsequence Clustering", PLOS ONE 11(8): e0157338. https://doi.org/10.1371/journal.pone.0157338, 2016.
Copyright © 2015 Akiyama_Laboratory, Tokyo Institute of Technology, All Rights Reserved.