-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
118 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,118 @@ | ||
### | ||
# using Revise | ||
### | ||
using DrWatson | ||
using GenerativeAD | ||
using StatsBase: fit!, predict, sample | ||
using Statistics | ||
using BSON | ||
using Flux | ||
using NPZ | ||
using Random | ||
|
||
parameters = ( | ||
lambda_rat = 1, | ||
lr = 1f-4, | ||
batchsize = 1024, | ||
wreg = 0.0, | ||
) | ||
|
||
# loading KDDCUP data from npz file | ||
file = datadir("kdd_cup.npz") # taken from https://github.com/mperezcarrasco/PyTorch-DAGMM | ||
pydata = NPZ.npzread(file) | ||
|
||
labels = pydata["kdd"][:, end]; | ||
features = copy(pydata["kdd"][:, 1:end-1]') | ||
|
||
normal_data = features[:, labels .== 0]; | ||
anomalous_data = features[:, labels .== 1]; | ||
|
||
# split data with fixed seed | ||
data = GenerativeAD.Datasets.train_val_test_split(normal_data, anomalous_data; seed=1) | ||
idim = size(data[1][1], 1) | ||
|
||
# when running in batch randomize model seed (reset after training - deterministic random batches) | ||
model_seed = rand(1:1000) | ||
Random.seed!(model_seed); | ||
encoder = Chain(Dense(idim, 60, tanh), Dense(60, 30, tanh), Dense(30, 10, tanh), Dense(10, 1)) | ||
decoder = Chain(Dense(1, 10, tanh), Dense(10, 30, tanh), Dense(30, 60, tanh), Dense(60, idim)) | ||
estimator = Chain(Dense(3, 10, tanh), Dropout(0.5), Dense(10, 4)) | ||
|
||
model = GenerativeAD.Models.DAGMM(encoder, decoder, estimator) | ||
info, fit_t, _, _, _ = @timed fit!(model, data; patience=20, check_interval=10, parameters...) | ||
Random.seed!() | ||
|
||
trained_model = info.model | ||
|
||
testmode!(trained_model, true) | ||
_, _, z, gamma = trained_model(data[1][1]) | ||
phi, mu, cov = GenerativeAD.Models.compute_params(z, gamma) | ||
testmode!(trained_model, false) | ||
|
||
trn_scores = predict(trained_model, data[1][1], phi, mu, cov); | ||
val_scores = predict(trained_model, data[2][1], phi, mu, cov); | ||
tst_scores = predict(trained_model, data[3][1], phi, mu, cov); | ||
|
||
using EvalMetrics: ConfusionMatrix, recall, precision, f1_score, roccurve, auc_trapezoidal | ||
|
||
# test only | ||
threshold = quantile(vcat(trn_scores, val_scores, tst_scores), 0.8) | ||
# threshold = quantile(vcat(trn_scores, val_scores), 0.8) | ||
|
||
tst_ŷ = tst_scores .> threshold; | ||
cm = ConfusionMatrix(data[3][2], tst_ŷ) | ||
rec, prc, f1s = recall(cm), precision(cm), f1_score(cm) | ||
|
||
roc = roccurve(data[3][2], tst_scores) | ||
auc = auc_trapezoidal(roc) | ||
|
||
|
||
# test + validation | ||
# val_ŷ = val_scores .> threshold; | ||
# cm = ConfusionMatrix(vcat(data[2][2], data[3][2]), vcat(val_ŷ, tst_ŷ)) | ||
# recall(cm), precision(cm), f1_score(cm) | ||
|
||
results = Dict( | ||
:history => info.history, | ||
:niter => info.niter, | ||
:model => info.model, | ||
:recall => rec, | ||
:precision => prc, | ||
:f1 => f1s, | ||
:auc => auc, | ||
:phi => phi, | ||
:mu => mu, | ||
:cov => cov, | ||
:threshold => threshold, | ||
:trn_scores => trn_scores, | ||
:trn_labels => data[1][2], | ||
:val_scores => val_scores, | ||
:val_labels => data[2][2], | ||
:tst_scores => tst_scores, | ||
:tst_labels => data[3][2] | ||
) | ||
|
||
@info("", model_seed, threshold, rec, prc, f1s, auc) | ||
|
||
save(datadir("dumpster/dagmm_kddcup99_$(model_seed).bson"), results) | ||
|
||
|
||
### analysis | ||
using DataFrames, ValueHistories | ||
files = readdir(datadir("dumpster"), join=true) | ||
results = [load(f) for f in files] | ||
|
||
df = DataFrame( | ||
"model_seed" => [parse(Int, split(split(f, '_')[end], '.')[1]) for f in files], | ||
"niter" => [r[:niter] for r in results], | ||
"precision" => [r[:precision] for r in results], | ||
"recall" => [r[:recall] for r in results], | ||
"f1" => [r[:f1] for r in results], | ||
"auc" => [r[:auc] for r in results], | ||
"threshold" => [r[:threshold] for r in results], | ||
) | ||
|
||
sort!(df, :niter) | ||
sort!(df, :auc) | ||
|
||
### |