Skip to content

Heap out of bounds write in `RaggedBinCount`

Low severity GitHub Reviewed Published May 12, 2021 in tensorflow/tensorflow • Updated Oct 30, 2024

Package

pip tensorflow (pip)

Affected versions

>= 2.3.0, < 2.3.3
>= 2.4.0, < 2.4.2

Patched versions

2.3.3
2.4.2
pip tensorflow-cpu (pip)
>= 2.3.0, < 2.3.3
>= 2.4.0, < 2.4.2
2.3.3
2.4.2
pip tensorflow-gpu (pip)
>= 2.3.0, < 2.3.3
>= 2.4.0, < 2.4.2
2.3.3
2.4.2

Description

Impact

If the splits argument of RaggedBincount does not specify a valid SparseTensor, then an attacker can trigger a heap buffer overflow:

import tensorflow as tf
tf.raw_ops.RaggedBincount(splits=[7,8], values= [5, 16, 51, 76, 29, 27, 54, 95],\
                          size= 59, weights= [0, 0, 0, 0, 0, 0, 0, 0],\
                          binary_output=False)

This will cause a read from outside the bounds of the splits tensor buffer in the implementation of the RaggedBincount op:

    for (int idx = 0; idx < num_values; ++idx) {
      while (idx >= splits(batch_idx)) {
        batch_idx++;
      }
      ...
      if (bin < size) {
        if (binary_output_) {
          out(batch_idx - 1, bin) = T(1);
        } else {
          T value = (weights_size > 0) ? weights(idx) : T(1);
          out(batch_idx - 1, bin) += value;
        }
      } 
    }

Before the for loop, batch_idx is set to 0. The attacker sets splits(0) to be 7, hence the while loop does not execute and batch_idx remains 0. This then results in writing to out(-1, bin), which is before the heap allocated buffer for the output tensor.

Patches

We have patched the issue in GitHub commit eebb96c2830d48597d055d247c0e9aebaea94cd5.

The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 and TensorFlow 2.3.3, as these are also affected.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by members of the Aivul Team from Qihoo 360.

References

@mihaimaruseac mihaimaruseac published to tensorflow/tensorflow May 12, 2021
Published by the National Vulnerability Database May 14, 2021
Reviewed May 18, 2021
Published to the GitHub Advisory Database May 21, 2021
Last updated Oct 30, 2024

Severity

Low

CVSS overall score

This score calculates overall vulnerability severity from 0 to 10 and is based on the Common Vulnerability Scoring System (CVSS).
/ 10

CVSS v4 base metrics

Exploitability Metrics
Attack Vector Local
Attack Complexity Low
Attack Requirements Present
Privileges Required Low
User interaction Passive
Vulnerable System Impact Metrics
Confidentiality None
Integrity None
Availability Low
Subsequent System Impact Metrics
Confidentiality None
Integrity None
Availability None

CVSS v4 base metrics

Exploitability Metrics
Attack Vector: This metric reflects the context by which vulnerability exploitation is possible. This metric value (and consequently the resulting severity) will be larger the more remote (logically, and physically) an attacker can be in order to exploit the vulnerable system. The assumption is that the number of potential attackers for a vulnerability that could be exploited from across a network is larger than the number of potential attackers that could exploit a vulnerability requiring physical access to a device, and therefore warrants a greater severity.
Attack Complexity: This metric captures measurable actions that must be taken by the attacker to actively evade or circumvent existing built-in security-enhancing conditions in order to obtain a working exploit. These are conditions whose primary purpose is to increase security and/or increase exploit engineering complexity. A vulnerability exploitable without a target-specific variable has a lower complexity than a vulnerability that would require non-trivial customization. This metric is meant to capture security mechanisms utilized by the vulnerable system.
Attack Requirements: This metric captures the prerequisite deployment and execution conditions or variables of the vulnerable system that enable the attack. These differ from security-enhancing techniques/technologies (ref Attack Complexity) as the primary purpose of these conditions is not to explicitly mitigate attacks, but rather, emerge naturally as a consequence of the deployment and execution of the vulnerable system.
Privileges Required: This metric describes the level of privileges an attacker must possess prior to successfully exploiting the vulnerability. The method by which the attacker obtains privileged credentials prior to the attack (e.g., free trial accounts), is outside the scope of this metric. Generally, self-service provisioned accounts do not constitute a privilege requirement if the attacker can grant themselves privileges as part of the attack.
User interaction: This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable system. This metric determines whether the vulnerability can be exploited solely at the will of the attacker, or whether a separate user (or user-initiated process) must participate in some manner.
Vulnerable System Impact Metrics
Confidentiality: This metric measures the impact to the confidentiality of the information managed by the VULNERABLE SYSTEM due to a successfully exploited vulnerability. Confidentiality refers to limiting information access and disclosure to only authorized users, as well as preventing access by, or disclosure to, unauthorized ones.
Integrity: This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. Integrity of the VULNERABLE SYSTEM is impacted when an attacker makes unauthorized modification of system data. Integrity is also impacted when a system user can repudiate critical actions taken in the context of the system (e.g. due to insufficient logging).
Availability: This metric measures the impact to the availability of the VULNERABLE SYSTEM resulting from a successfully exploited vulnerability. While the Confidentiality and Integrity impact metrics apply to the loss of confidentiality or integrity of data (e.g., information, files) used by the system, this metric refers to the loss of availability of the impacted system itself, such as a networked service (e.g., web, database, email). Since availability refers to the accessibility of information resources, attacks that consume network bandwidth, processor cycles, or disk space all impact the availability of a system.
Subsequent System Impact Metrics
Confidentiality: This metric measures the impact to the confidentiality of the information managed by the SUBSEQUENT SYSTEM due to a successfully exploited vulnerability. Confidentiality refers to limiting information access and disclosure to only authorized users, as well as preventing access by, or disclosure to, unauthorized ones.
Integrity: This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. Integrity of the SUBSEQUENT SYSTEM is impacted when an attacker makes unauthorized modification of system data. Integrity is also impacted when a system user can repudiate critical actions taken in the context of the system (e.g. due to insufficient logging).
Availability: This metric measures the impact to the availability of the SUBSEQUENT SYSTEM resulting from a successfully exploited vulnerability. While the Confidentiality and Integrity impact metrics apply to the loss of confidentiality or integrity of data (e.g., information, files) used by the system, this metric refers to the loss of availability of the impacted system itself, such as a networked service (e.g., web, database, email). Since availability refers to the accessibility of information resources, attacks that consume network bandwidth, processor cycles, or disk space all impact the availability of a system.
CVSS:4.0/AV:L/AC:L/AT:P/PR:L/UI:P/VC:N/VI:N/VA:L/SC:N/SI:N/SA:N

EPSS score

Exploit Prediction Scoring System (EPSS)

This score estimates the probability of this vulnerability being exploited within the next 30 days. Data provided by FIRST.
(5th percentile)

Weaknesses

CVE ID

CVE-2021-29514

GHSA ID

GHSA-8h46-5m9h-7553

Source code

Loading Checking history
See something to contribute? Suggest improvements for this vulnerability.