Skip to content

Commit

Permalink
Add scripts to preprocess audio signal
Browse files Browse the repository at this point in the history
Signed-off-by: Adam Wawrzynski <[email protected]>
  • Loading branch information
adamwawrzynski committed Mar 25, 2019
1 parent 1f5d50b commit 0261d78
Show file tree
Hide file tree
Showing 6 changed files with 480 additions and 0 deletions.
Empty file added __init__.py
Empty file.
Binary file added data/sample.wav
Binary file not shown.
Empty file added modules/__init__.py
Empty file.
92 changes: 92 additions & 0 deletions modules/audio_preprocessing.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,92 @@
import numpy as np
import scipy.io.wavfile
from scipy.fftpack import dct
import matplotlib.pyplot as plt

def emphesize_signal(signal, pre_emphasis = 0.97):
''' Filter signal to amplify the high frequencies '''
emphasized_signal = np.append(signal[0], signal[1:] - pre_emphasis * signal[:-1])
return emphasized_signal

def get_filter_banks(signal, sample_rate, frame_size = 0.025, frame_stride = 0.01, NFFT = 512, nfilt = 40):
''' Calculate filter banks from signal '''
emphasized_signal = emphesize_signal(signal)

# Convert from seconds to samples
frame_length, frame_step = frame_size * sample_rate, frame_stride * sample_rate
signal_length = len(emphasized_signal)
frame_length = int(round(frame_length))
frame_step = int(round(frame_step))

# Make sure that we have at least 1 frame
num_frames = int(np.ceil(float(np.abs(signal_length - frame_length)) / frame_step))

pad_signal_length = num_frames * frame_step + frame_length
z = np.zeros((pad_signal_length - signal_length))

# Pad Signal to make sure that all frames have equal number of samples
# without truncating any samples from the original signal
pad_signal = np.append(emphasized_signal, z)

indices = np.tile(np.arange(0, frame_length), (num_frames, 1)) + np.tile(np.arange(0, num_frames * frame_step, frame_step), (frame_length, 1)).T
frames = pad_signal[indices.astype(np.int32, copy=False)]

frames *= np.hamming(frame_length)
# frames *= 0.54 - 0.46 * np.cos((2 * np.pi * n) / (frame_length - 1)) # Explicit Implementation **

# Magnitude of the FFT
mag_frames = np.absolute(np.fft.rfft(frames, NFFT))

# Power Spectrum
pow_frames = ((1.0 / NFFT) * ((mag_frames) ** 2))

low_freq_mel = 0

# Convert Hz to Mel
high_freq_mel = (2595 * np.log10(1 + (sample_rate / 2) / 700))

# Equally spaced in Mel scale
mel_points = np.linspace(low_freq_mel, high_freq_mel, nfilt + 2)

# Convert Mel to Hz
hz_points = (700 * (10**(mel_points / 2595) - 1))
bin = np.floor((NFFT + 1) * hz_points / sample_rate)

fbank = np.zeros((nfilt, int(np.floor(NFFT / 2 + 1))))
for m in range(1, nfilt + 1):
f_m_minus = int(bin[m - 1]) # left
f_m = int(bin[m]) # center
f_m_plus = int(bin[m + 1]) # right

for k in range(f_m_minus, f_m):
fbank[m - 1, k] = (k - bin[m - 1]) / (bin[m] - bin[m - 1])
for k in range(f_m, f_m_plus):
fbank[m - 1, k] = (bin[m + 1] - k) / (bin[m + 1] - bin[m])
filter_banks = np.dot(pow_frames, fbank.T)
filter_banks = np.where(filter_banks == 0, np.finfo(float).eps, filter_banks) # Numerical Stability
filter_banks = 20 * np.log10(filter_banks) # dB
return filter_banks

def get_mfcc(filter_banks, num_ceps = 12):
''' Calculate MFCC from filter banks '''
mfcc = dct(filter_banks, type=2, axis=1, norm='ortho')[:, 1 : (num_ceps + 1)]
return mfcc

def normalize_mfcc(mfcc, filter_banks, cep_lifter = 100):
''' Normalize MFCC '''
nframes, ncoeff = mfcc.shape
n = np.arange(ncoeff)
lift = 1 + (cep_lifter / 2) * np.sin(np.pi * n / cep_lifter)
mfcc *= lift
filter_banks -= (np.mean(filter_banks, axis=0)) # + 1e-8)
mfcc -= (np.mean(mfcc, axis=0)) # + 1e-8)
return mfcc

def plot_spectrogram(spectrogram, title):
''' Plot spectrogram '''
plt.figure(figsize=(12, 5))
plt.title(title)
plt.imshow(spectrogram.T, cmap=plt.cm.jet, aspect='auto')
plt.xticks(np.arange(0, (spectrogram.T).shape[1], int((spectrogram.T).shape[1] / 4)))
ax = plt.gca()
ax.invert_yaxis()
194 changes: 194 additions & 0 deletions notebooks/.ipynb_checkpoints/audio_preprocessing_demo-checkpoint.ipynb

Large diffs are not rendered by default.

194 changes: 194 additions & 0 deletions notebooks/audio_preprocessing_demo.ipynb

Large diffs are not rendered by default.

0 comments on commit 0261d78

Please sign in to comment.