-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
b1b7225
commit ec5683a
Showing
2 changed files
with
7,133 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,271 @@ | ||
{ | ||
"metadata": { | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.6.9" | ||
}, | ||
"orig_nbformat": 2, | ||
"kernelspec": { | ||
"name": "python36964bitvenvvenv2f96fd8b646d44e3b9e0885369a63a85", | ||
"display_name": "Python 3.6.9 64-bit ('venv': venv)", | ||
"language": "python" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2, | ||
"cells": [ | ||
{ | ||
"source": [ | ||
"## Install required libraries" | ||
], | ||
"cell_type": "markdown", | ||
"metadata": {} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"!pip install hub\n", | ||
"!pip install matplotlib\n", | ||
"!pip install torch" | ||
] | ||
}, | ||
{ | ||
"source": [ | ||
"## Imports" | ||
], | ||
"cell_type": "markdown", | ||
"metadata": {} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import hub\n", | ||
"import torch\n", | ||
"import numpy as np\n", | ||
"import matplotlib.pyplot as plt\n", | ||
"from torch import nn\n", | ||
"import torch.nn.functional as F\n", | ||
"from torch.utils.data import ConcatDataset\n", | ||
"import torch\n", | ||
"from torch.utils.data import random_split\n", | ||
"from hub.compute.generic.ds_transforms import shift_scale_rotate, transpose\n", | ||
"from hub.api.sharded_datasetview import ShardedDatasetView" | ||
] | ||
}, | ||
{ | ||
"source": [ | ||
"## Load the dataset" | ||
], | ||
"cell_type": "markdown", | ||
"metadata": {} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"ds = hub.load(\"activeloop/mnist\")" | ||
] | ||
}, | ||
{ | ||
"source": [ | ||
"## Visualize" | ||
], | ||
"cell_type": "markdown", | ||
"metadata": {} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"img = ds[\"image\", 5].compute()\n", | ||
"plt.imshow(img)" | ||
] | ||
}, | ||
{ | ||
"source": [ | ||
"## Augment images and add to the original Dataset" | ||
], | ||
"cell_type": "markdown", | ||
"metadata": {} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"ds_augmented = shift_scale_rotate(ds, keys=['image'], rotate_limit=0, shift_limit=0.1)\n", | ||
"ds_augmented = ds_augmented.store(\"/tmp/mnist_aug\")\n", | ||
"ds_sharded = ShardedDatasetView([ds, ds_augmented])\n", | ||
"\n", | ||
"@hub.transform(schema=ds_sharded.schema, scheduler=\"threaded\", workers=8)\n", | ||
"def transform_identity(sample):\n", | ||
" return sample\n", | ||
"\n", | ||
"ds = transform_identity(ds_sharded).store('/tmp/mnist_all')" | ||
] | ||
}, | ||
{ | ||
"source": [ | ||
"## Define a model" | ||
], | ||
"cell_type": "markdown", | ||
"metadata": {} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"class Net(nn.Module):\n", | ||
" def __init__(self):\n", | ||
" super(Net, self).__init__()\n", | ||
" self.conv = nn.Conv2d(1, 32, 3, 1)\n", | ||
" self.dropout = nn.Dropout(0.25)\n", | ||
" self.fc = nn.Linear(5408, 10)\n", | ||
"\n", | ||
" def forward(self, x):\n", | ||
" x = self.conv(x.float())\n", | ||
" x = F.relu(x)\n", | ||
" x = F.max_pool2d(x, 2)\n", | ||
" x = self.dropout(x)\n", | ||
" x = torch.flatten(x, 1)\n", | ||
" x = self.fc(x)\n", | ||
" output = F.log_softmax(x, dim=1)\n", | ||
" return output\n" | ||
] | ||
}, | ||
{ | ||
"source": [ | ||
"## Training and validation" | ||
], | ||
"cell_type": "markdown", | ||
"metadata": {} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def train(trainloader: torch.utils.data.DataLoader, valloader: torch.utils.data.DataLoader, net: nn.Module):\n", | ||
" criterion = torch.nn.CrossEntropyLoss()\n", | ||
" optimizer = torch.optim.SGD(net.parameters(), lr=0.0001, momentum=0.9)\n", | ||
" for epoch in range(2):\n", | ||
" print(f\"Epoch {epoch}\")\n", | ||
" running_loss = 0.0\n", | ||
" for i, data in enumerate(trainloader, 0):\n", | ||
" X, y = data\n", | ||
" X = X.permute(0, 3, 1, 2)\n", | ||
" optimizer.zero_grad()\n", | ||
" outputs = net(X)\n", | ||
" loss = criterion(outputs, y)\n", | ||
" loss.backward()\n", | ||
" optimizer.step()\n", | ||
"\n", | ||
" running_loss += loss.item()\n", | ||
" if not i % 1000:\n", | ||
" print(f\"Loss {loss.item()}\")\n", | ||
" validate(net, valloader)\n", | ||
" print(\"Finished Training\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def validate(net, valloader):\n", | ||
" correct_count, all_count = 0, 0\n", | ||
" for i, data in enumerate(valloader):\n", | ||
" X, y = data\n", | ||
" X = X.permute(0, 3, 1, 2)\n", | ||
" with torch.no_grad():\n", | ||
" outputs = net(X)\n", | ||
" pred_label = outputs.argmax(1)\n", | ||
" correct_count += np.sum(pred_label.numpy() == y.numpy())\n", | ||
" all_count += len(pred_label)\n", | ||
"\n", | ||
" print(\"Number Of Images Tested =\", all_count)\n", | ||
" print(\"\\nModel Accuracy =\", (correct_count/all_count))" | ||
] | ||
}, | ||
{ | ||
"source": [ | ||
"## Convert to PyTorch, split the data and train" | ||
], | ||
"cell_type": "markdown", | ||
"metadata": {} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def transform(data):\n", | ||
" img = data['image']\n", | ||
" label = data['label']\n", | ||
" return img, label" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"torch_ds = ds.to_pytorch(transform=transform)\n", | ||
"net = Net()\n", | ||
"train_len = int(0.8 * len(torch_ds))\n", | ||
"test_len = len(torch_ds) - train_len\n", | ||
"train_ds, val_ds = random_split(torch_ds, [train_len, test_len])\n", | ||
"train_dataloader = torch.utils.data.DataLoader(\n", | ||
" train_ds,\n", | ||
" batch_size=8,\n", | ||
" shuffle=True,\n", | ||
" num_workers=8\n", | ||
" )\n", | ||
"val_dataloader = torch.utils.data.DataLoader(\n", | ||
" val_ds,\n", | ||
" batch_size=8,\n", | ||
" shuffle=False,\n", | ||
" num_workers=8\n", | ||
" )\n", | ||
"train(train_dataloader, val_dataloader, net)\n", | ||
"torch.save(net, \"/tmp/model_mnist.pth\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
] | ||
} |
Oops, something went wrong.