Skip to content

Commit

Permalink
Merge pull request #552 from ArighnaIITG/ari_algo2
Browse files Browse the repository at this point in the history
New Greedy Algorithm
  • Loading branch information
ZoranPandovski authored Dec 2, 2017
2 parents 65056f5 + b9c698c commit f9944c8
Showing 1 changed file with 144 additions and 0 deletions.
144 changes: 144 additions & 0 deletions dial_algo/dial.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,144 @@
// C++ Program for Dijkstra's dial implementation
#include<bits/stdc++.h>
using namespace std;
# define INF 0x3f3f3f3f

// This class represents a directed graph using
// adjacency list representation
class Graph
{
int V; // No. of vertices

// In a weighted graph, we need to store vertex
// and weight pair for every edge
list< pair<int, int> > *adj;

public:
Graph(int V); // Constructor

// function to add an edge to graph
void addEdge(int u, int v, int w);

// prints shortest path from s
void shortestPath(int s, int W);
};

// Allocates memory for adjacency list
Graph::Graph(int V)
{
this->V = V;
adj = new list< pair<int, int> >[V];
}

// adds edge between u and v of weight w
void Graph::addEdge(int u, int v, int w)
{
adj[u].push_back(make_pair(v, w));
adj[v].push_back(make_pair(u, w));
}

// Prints shortest paths from src to all other vertices.
// W is the maximum weight of an edge
void Graph::shortestPath(int src, int W)
{
/* With each distance, iterator to that vertex in
its bucket is stored so that vertex can be deleted
in O(1) at time of updation. So
dist[i].first = distance of ith vertex from src vertex
dits[i].second = iterator to vertex i in bucket number */
vector<pair<int, list<int>::iterator> > dist(V);

// Initialize all distances as infinite (INF)
for (int i = 0; i < V; i++)
dist[i].first = INF;

// Create buckets B[].
// B[i] keep vertex of distance label i
list<int> B[W * V + 1];

B[0].push_back(src);
dist[src].first = 0;

//
int idx = 0;
while (1)
{
// Go sequentially through buckets till one non-empty
// bucket is found
while (B[idx].size() == 0 && idx < W*V)
idx++;

// If all buckets are empty, we are done.
if (idx == W * V)
break;

// Take top vertex from bucket and pop it
int u = B[idx].front();
B[idx].pop_front();

// Process all adjacents of extracted vertex 'u' and
// update their distanced if required.
for (auto i = adj[u].begin(); i != adj[u].end(); ++i)
{
int v = (*i).first;
int weight = (*i).second;

int du = dist[u].first;
int dv = dist[v].first;

// If there is shorted path to v through u.
if (dv > du + weight)
{
// If dv is not INF then it must be in B[dv]
// bucket, so erase its entry using iterator
// in O(1)
if (dv != INF)
B[dv].erase(dist[v].second);

// updating the distance
dist[v].first = du + weight;
dv = dist[v].first;

// pushing vertex v into updated distance's bucket
B[dv].push_front(v);

// storing updated iterator in dist[v].second
dist[v].second = B[dv].begin();
}
}
}

// Print shortest distances stored in dist[]
printf("Vertex Distance from Source\n");
for (int i = 0; i < V; ++i)
printf("%d %d\n", i, dist[i].first);
}

// Driver program to test methods of graph class
int main()
{
// create the graph given in above fugure
int V = 9;
Graph g(V);

// making above shown graph
g.addEdge(0, 1, 4);
g.addEdge(0, 7, 8);
g.addEdge(1, 2, 8);
g.addEdge(1, 7, 11);
g.addEdge(2, 3, 7);
g.addEdge(2, 8, 2);
g.addEdge(2, 5, 4);
g.addEdge(3, 4, 9);
g.addEdge(3, 5, 14);
g.addEdge(4, 5, 10);
g.addEdge(5, 6, 2);
g.addEdge(6, 7, 1);
g.addEdge(6, 8, 6);
g.addEdge(7, 8, 7);

// maximum weighted edge - 14
g.shortestPath(0, 14);

return 0;
}

0 comments on commit f9944c8

Please sign in to comment.