-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
95a31de
commit ae3fd32
Showing
3 changed files
with
189 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,80 @@ | ||
import attrs | ||
import einops | ||
import torch | ||
from typeguard import typechecked | ||
|
||
from zetta_utils import builder, convnet | ||
|
||
|
||
@builder.register("DefectDetector") | ||
@typechecked | ||
@attrs.mutable | ||
class DefectDetector: | ||
# Input uint8 [ 0 .. 255] | ||
# Output uint8 Prediction [0 .. 255] | ||
|
||
# Don't create the model during initialization for efficient serialization | ||
model_path: str | ||
tile_pad_in: int = 32 | ||
tile_size: int = 448 | ||
|
||
def __call__(self, src: torch.Tensor) -> torch.Tensor: | ||
if (src != 0).sum() == 0: | ||
result = torch.zeros_like(src).float() | ||
else: | ||
if torch.cuda.is_available(): | ||
device = "cuda" | ||
else: | ||
device = "cpu" | ||
|
||
# load model during the call _with caching_ | ||
model = convnet.utils.load_model(self.model_path, device=device, use_cache=True) | ||
|
||
if src.dtype == torch.uint8: | ||
data_in = src.float() / 255.0 # [0.0 .. 1.0] | ||
else: | ||
raise ValueError(f"Unsupported src dtype: {src.dtype}") | ||
|
||
data_in = einops.rearrange(data_in, "C X Y Z -> Z C X Y") | ||
data_in = data_in.to(device=device) | ||
with torch.no_grad(): | ||
result = torch.zeros_like( | ||
data_in[ | ||
..., | ||
: data_in.shape[-2], | ||
: data_in.shape[-1], | ||
] | ||
).float() | ||
|
||
tile_pad_out = self.tile_pad_in | ||
|
||
for x in range( | ||
self.tile_pad_in, data_in.shape[-2] - self.tile_pad_in, self.tile_size | ||
): | ||
x_start = x - self.tile_pad_in | ||
x_end = x + self.tile_size + self.tile_pad_in | ||
for y in range( | ||
self.tile_pad_in, data_in.shape[-1] - self.tile_pad_in, self.tile_size | ||
): | ||
y_start = y - self.tile_pad_in | ||
y_end = y + self.tile_size + self.tile_pad_in | ||
tile = data_in[:, :, x_start:x_end, y_start:y_end] | ||
if (tile != 0).sum() > 0.0: | ||
tile_result = model(tile) | ||
if tile_pad_out > 0: | ||
tile_result = tile_result[ | ||
:, :, tile_pad_out:-tile_pad_out, tile_pad_out:-tile_pad_out | ||
] | ||
|
||
result[ | ||
:, | ||
:, | ||
x : x + tile_result.shape[-2], | ||
y : y + tile_result.shape[-1], | ||
] = tile_result | ||
|
||
result = einops.rearrange(result, "Z C X Y -> C X Y Z") | ||
result = 255.0 * torch.sigmoid(result) | ||
result[src == 0.0] = 0.0 | ||
|
||
return result.round().clamp(0, 255).type(torch.uint8) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,107 @@ | ||
import attrs | ||
import einops | ||
import torch | ||
from typeguard import typechecked | ||
|
||
from zetta_utils import builder, convnet | ||
import numpy as np | ||
import cv2 | ||
import fastremap | ||
import cc3d | ||
|
||
@builder.register("ResinDetector") | ||
@typechecked | ||
@attrs.mutable | ||
class ResinDetector: | ||
# Input uint8 [ 0 .. 255] | ||
# Output uint8 Prediction [0 .. 255] | ||
|
||
# Don't create the model during initialization for efficient serialization | ||
model_path: str | ||
tile_pad_in: int = 32 | ||
tile_size: int = 448 | ||
tissue_filter_threshold: int = 1000 | ||
resin_filter_threshold: int = 1000 | ||
|
||
def __call__(self, src: torch.Tensor) -> torch.Tensor: | ||
if (src != 0).sum() == 0: | ||
return torch.full_like(src, 255).type(torch.uint8) | ||
else: | ||
if torch.cuda.is_available(): | ||
device = "cuda" | ||
else: | ||
device = "cpu" | ||
|
||
# load model during the call _with caching_ | ||
model = convnet.utils.load_model(self.model_path, device=device, use_cache=True) | ||
|
||
if src.dtype == torch.uint8: | ||
data_in = src.float() / 255.0 # [0.0 .. 1.0] | ||
else: | ||
raise ValueError(f"Unsupported src dtype: {src.dtype}") | ||
|
||
data_in = einops.rearrange(data_in, "C X Y Z -> Z C X Y") | ||
data_in = data_in.to(device=device) | ||
with torch.no_grad(): | ||
result = torch.zeros_like( | ||
data_in[ | ||
..., | ||
: data_in.shape[-2], | ||
: data_in.shape[-1], | ||
] | ||
).float() | ||
|
||
tile_pad_out = self.tile_pad_in | ||
|
||
for x in range( | ||
self.tile_pad_in, data_in.shape[-2] - self.tile_pad_in, self.tile_size | ||
): | ||
x_start = x - self.tile_pad_in | ||
x_end = x + self.tile_size + self.tile_pad_in | ||
for y in range( | ||
self.tile_pad_in, data_in.shape[-1] - self.tile_pad_in, self.tile_size | ||
): | ||
y_start = y - self.tile_pad_in | ||
y_end = y + self.tile_size + self.tile_pad_in | ||
tile = data_in[:, :, x_start:x_end, y_start:y_end] | ||
if (tile != 0).sum() > 0.0: | ||
tile_result = model(tile) | ||
if tile_pad_out > 0: | ||
tile_result = tile_result[ | ||
:, :, tile_pad_out:-tile_pad_out, tile_pad_out:-tile_pad_out | ||
] | ||
|
||
result[ | ||
:, | ||
:, | ||
x : x + tile_result.shape[-2], | ||
y : y + tile_result.shape[-1], | ||
] = tile_result | ||
|
||
result = einops.rearrange(result, "Z C X Y -> C X Y Z") | ||
result = torch.sigmoid(result) | ||
pred = (((result > 250. / 255.) * 255).to(dtype=torch.uint8, device='cpu')) | ||
|
||
# Background is resin | ||
pred[src == 0.0] = 255 | ||
|
||
# Filter small islands of tissue | ||
tissue = (255 - pred).squeeze().numpy() | ||
tissue = cv2.morphologyEx(tissue, cv2.MORPH_CLOSE, np.ones((3,3), np.uint8)) | ||
tissue = cv2.morphologyEx(tissue, cv2.MORPH_OPEN, np.ones((3,3), np.uint8)) | ||
if self.tissue_filter_threshold > 0: | ||
cc = cc3d.connected_components(tissue) | ||
uniq, counts = fastremap.unique(cc, return_counts=True) | ||
cc = fastremap.mask(cc, [lbl for lbl, cnt in zip(uniq, counts) if cnt < self.tissue_filter_threshold]) | ||
tissue[cc==0] = 0 | ||
|
||
# Filter small islands of resin | ||
resin = 255 - tissue | ||
if self.resin_filter_threshold > 0: | ||
cc = cc3d.connected_components(resin) | ||
uniq, counts = fastremap.unique(cc, return_counts=True) | ||
cc = fastremap.mask(cc, [lbl for lbl, cnt in zip(uniq, counts) if cnt < self.resin_filter_threshold]) | ||
resin[cc==0] = 0 | ||
|
||
|
||
return torch.from_numpy(resin).reshape(pred.shape) |