Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[AutoBump] Merge with 0a607a41 (Nov 15) (118) #507

Merged
merged 4 commits into from
Feb 4, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
32 changes: 10 additions & 22 deletions lib/Conversion/TorchToLinalg/Utils.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -578,6 +578,12 @@ LogicalResult torch_to_linalg::permuteTensor(Operation *op,
int64_t inputRank = inType.getRank();
Type elementType = inType.getElementType();

// Check for 0-D tensor.
if (inputRank == 0) {
result = input;
return success();
}

// Check if the dimensions are a valid constants.
int64_t numDimensions = dimensions.size();
if (inputRank != numDimensions)
Expand All @@ -596,28 +602,10 @@ LogicalResult torch_to_linalg::permuteTensor(Operation *op,

Value outVector = rewriter.create<tensor::EmptyOp>(
loc, getAsOpFoldResult(outputDims), elementType);
SmallVector<AffineExpr> idExprs;
SmallVector<AffineExpr> swapExprs;
for (uint32_t i = 0; i < inputRank; i++)
idExprs.push_back(getAffineDimExpr(i, rewriter.getContext()));
for (uint32_t i = 0; i < inputRank; i++)
swapExprs.push_back(idExprs[dimensions[i]]);

AffineMap inputMap =
AffineMap::get(inputRank, /*symbolCount=*/0, idExprs, op->getContext());
AffineMap outputMap =
AffineMap::get(inputRank, /*symbolCount=*/0, swapExprs, op->getContext());
SmallVector<AffineMap> indexingMaps{inputMap, outputMap};
SmallVector<utils::IteratorType> iteratorTypes(inputRank,
utils::IteratorType::parallel);
result = rewriter
.create<linalg::GenericOp>(
loc, outVector.getType(), input, outVector, indexingMaps,
iteratorTypes,
[](OpBuilder &b, Location loc, ValueRange args) {
b.create<linalg::YieldOp>(loc, args[0]);
})
.getResult(0);

result =
rewriter.create<linalg::TransposeOp>(loc, input, outVector, dimensions)
->getResult(0);
return success();
}

Expand Down
2 changes: 1 addition & 1 deletion python/torch_mlir/tools/import_onnx/__main__.py
Original file line number Diff line number Diff line change
Expand Up @@ -137,7 +137,7 @@ def load_onnx_model(args: argparse.Namespace) -> onnx.ModelProto:
# Load the temp file and the external data.
inferred_model = onnx.load(temp_inferred_file, load_external_data=False)
data_dir = Path(input_dir if args.temp_dir is None else args.data_dir)
onnx.load_external_data_for_model(inferred_model, data_dir)
onnx.load_external_data_for_model(inferred_model, str(data_dir))

# Remove the inferred shape file unless asked to keep it
if not args.keep_temps:
Expand Down
34 changes: 34 additions & 0 deletions test/Conversion/TorchToLinalg/datamovement.mlir
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
// RUN: torch-mlir-opt <%s -convert-torch-to-linalg -canonicalize -split-input-file -verify-diagnostics | FileCheck %s

// CHECK-LABEL: func.func @torch.aten.permute(
// CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[64,32,16,8,4],f32>) -> !torch.vtensor<[64,8,4,32,16],f32> {
// CHECK: %[[VAL_1:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[64,32,16,8,4],f32> -> tensor<64x32x16x8x4xf32>
// CHECK: %[[VAL_2:.*]] = tensor.empty() : tensor<64x8x4x32x16xf32>
// CHECK: %[[VAL_3:.*]] = linalg.transpose ins(%[[VAL_1]] : tensor<64x32x16x8x4xf32>) outs(%[[VAL_2]] : tensor<64x8x4x32x16xf32>) permutation = [0, 3, 4, 1, 2]
// CHECK: %[[VAL_4:.*]] = torch_c.from_builtin_tensor %[[VAL_3]] : tensor<64x8x4x32x16xf32> -> !torch.vtensor<[64,8,4,32,16],f32>
// CHECK: return %[[VAL_4]] : !torch.vtensor<[64,8,4,32,16],f32>
// CHECK: }
func.func @torch.aten.permute(%arg0: !torch.vtensor<[64,32,16,8,4],f32>) -> !torch.vtensor<[64,8,4,32,16],f32> {
%int0 = torch.constant.int 0
%int3 = torch.constant.int 3
%int4 = torch.constant.int 4
%int1 = torch.constant.int 1
%int2 = torch.constant.int 2
%0 = torch.prim.ListConstruct %int0, %int3, %int4, %int1, %int2 : (!torch.int, !torch.int, !torch.int, !torch.int, !torch.int) -> !torch.list<int>
%1 = torch.aten.permute %arg0, %0 : !torch.vtensor<[64,32,16,8,4],f32>, !torch.list<int> -> !torch.vtensor<[64,8,4,32,16],f32>
return %1 : !torch.vtensor<[64,8,4,32,16],f32>
}

// -----

// CHECK-LABEL: func.func @torch.aten.permute$rank0(
// CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[],f32>) -> !torch.vtensor<[],f32> {
// CHECK: %[[VAL_1:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[],f32> -> tensor<f32>
// CHECK: %[[VAL_2:.*]] = torch_c.from_builtin_tensor %[[VAL_1]] : tensor<f32> -> !torch.vtensor<[],f32>
// CHECK: return %[[VAL_2]] : !torch.vtensor<[],f32>
// CHECK: }
func.func @torch.aten.permute$rank0(%arg0: !torch.vtensor<[],f32>) -> !torch.vtensor<[],f32> {
%0 = torch.prim.ListConstruct : () -> !torch.list<int>
%1 = torch.aten.permute %arg0, %0 : !torch.vtensor<[],f32>, !torch.list<int> -> !torch.vtensor<[],f32>
return %1 : !torch.vtensor<[],f32>
}
Loading