Skip to content

Commit

Permalink
Feat (brevitas_examples/llm): remove dependencies from optimum-amd (#…
Browse files Browse the repository at this point in the history
  • Loading branch information
Giuseppe5 authored Dec 2, 2024
1 parent d51087c commit 1ca8d7a
Show file tree
Hide file tree
Showing 8 changed files with 198 additions and 86 deletions.
2 changes: 0 additions & 2 deletions noxfile.py
Original file line number Diff line number Diff line change
Expand Up @@ -130,8 +130,6 @@ def tests_brevitas_examples_llm(session, pytorch, jit_status):
install_pytorch(pytorch, session)
install_torchvision(pytorch, session) # Optimum seems to require torchvision
session.install('-e', '.[test, llm, export]')
session.install(
'optimum-amd[brevitas] @ git+https://github.com/huggingface/optimum-amd.git@main')
session.run('pytest', '-n', 'logical', '-k', 'llm', 'tests/brevitas_examples/test_llm.py')


Expand Down
6 changes: 5 additions & 1 deletion requirements/requirements-llm.txt
Original file line number Diff line number Diff line change
@@ -1,3 +1,7 @@
# optimum-amd[brevitas] @ git+https://github.com/huggingface/optimum-amd.git@main
accelerate
datasets
onnx
onnxruntime
optimum
tqdm
transformers[sentencepiece]
1 change: 0 additions & 1 deletion src/brevitas_examples/llm/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,6 @@
- datasets
- torch_mlir (optional for torch-mlir based export)
- optimum
- optimum-amd (install from main)
- accelerate

## Run
Expand Down
121 changes: 70 additions & 51 deletions src/brevitas_examples/llm/llm_quant/data.py
Original file line number Diff line number Diff line change
@@ -1,19 +1,27 @@
"""
Adapted from https://github.com/IST-DASLab/gptq, released under the following LICENSE:
Adapted from https://github.com/huggingface/optimum-amd, released under the following LICENSE:
Copyright 2023 IST-DASLab
MIT License
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Copyright (c) 2023 Hugging Face
http://www.apache.org/licenses/LICENSE-2.0
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""

import random
Expand All @@ -24,50 +32,61 @@
from tqdm import tqdm


def get_c4(nsamples, seed, seqlen, tokenizer, split='train', nvalsamples=0):
if split == 'train':
def get_c4(
tokenizer: Any,
seqlen: int,
nsamples: int,
split: str = "train",
fuse_sequences: bool = True,
seed: int = 42):
random.seed(seed)

if split == "train":
data = load_dataset(
'allenai/c4',
'allenai--c4',
data_files={'train': 'en/c4-train.00000-of-01024.json.gz'},
split='train',
use_auth_token=False)

random.seed(seed)
dataloader = []
for _ in range(nsamples):
while True:
i = random.randint(0, len(data) - 1)
trainenc = tokenizer(data[i]['text'], return_tensors='pt')
if trainenc.input_ids.shape[1] >= seqlen:
break
i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1)
j = i + seqlen
inp = trainenc.input_ids[:, i:j]
dataloader.append(inp)
return dataloader
elif split == 'validation':
"allenai/c4", split="train", data_files={"train": "en/c4-train.00000-of-01024.json.gz"})
elif split == "validation":
data = load_dataset(
'allenai/c4',
'allenai--c4',
data_files={'validation': 'en/c4-validation.00000-of-00008.json.gz'},
split='validation',
use_auth_token=False)

random.seed(0) # hardcoded for validation reproducibility
valenc = []
for _ in range(nvalsamples):
while True:
i = random.randint(0, len(data) - 1)
tmp = tokenizer(data[i]['text'], return_tensors='pt')
if tmp.input_ids.shape[1] >= seqlen:
break
i = random.randint(0, tmp.input_ids.shape[1] - seqlen - 1)
"allenai/c4",
split="validation",
data_files={"validation": "en/c4-validation.00000-of-00008.json.gz"},
)

if fuse_sequences:
data = data.shuffle(seed=seed)[:10000] # c4 is too big.
full_text = "\n\n".join(data["text"])
tokenized_data = tokenizer(full_text, return_tensors="pt")

dataset = []
for _ in range(nsamples):
i = random.randint(0, tokenized_data.input_ids.shape[1] - seqlen - 1)
j = i + seqlen
valenc.append(tmp.input_ids[:, i:j])
inp = tokenized_data.input_ids[:, i:j]
attention_mask = torch.ones((1, seqlen), dtype=torch.int64)
dataset.append({"input_ids": inp, "attention_mask": attention_mask})
else:
dataset = []
with tqdm(total=nsamples) as pbar:
while len(dataset) < nsamples:
data_index = random.randint(0, len(data) - 1)

enc = tokenizer(data[data_index]["text"], return_tensors="pt")

if enc["input_ids"].shape[1] < seqlen:
continue

start_idx = random.randint(0, enc["input_ids"].shape[1] - seqlen)
end_idx = start_idx + seqlen - 1
attention_mask = torch.ones((1, seqlen), dtype=torch.int64)
input_ids = enc["input_ids"][:, start_idx:end_idx + 1]

# Add BOS token.
if tokenizer.eos_token_id is not None:
input_ids[:, 0] = tokenizer.eos_token_id

dataset.append({"input_ids": input_ids, "attention_mask": attention_mask})
pbar.update(1)

valenc = torch.hstack(valenc)
return valenc
return dataset


def get_wikitext2(
Expand Down
41 changes: 38 additions & 3 deletions src/brevitas_examples/llm/llm_quant/data_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,18 +25,53 @@
"""

import random
from typing import Any, Optional, Union
from typing import Any, Iterable, List, Optional, Union

import numpy as np
from optimum.amd.brevitas.data_utils import DatasetToDevice
from optimum.amd.brevitas.data_utils import get_c4
from optimum.utils.normalized_config import NormalizedConfigManager
import torch
from transformers import AutoConfig

from .data import get_c4
from .data import get_wikitext2


class DatasetToDevice(torch.utils.data.Dataset):

def __init__(self, data: List, device: Optional[Union[str, torch.device]]):
super().__init__()
self.data = data
self.device = device

def __getitem__(self, idx):
if self.device is not None:
return {
name: recursive_to_device(val, self.device) for name, val in self.data[idx].items()}
else:
return self.data[idx]

def __len__(self):
return len(self.data)


@torch.no_grad()
def recursive_to_device(tensor_or_iterable: Union[Iterable, torch.Tensor], device) -> None:
if isinstance(tensor_or_iterable, torch.Tensor):
return tensor_or_iterable.to(device)
elif isinstance(tensor_or_iterable,
tuple): # Special handling of tuples, since they are immutable
tmp_list = []
for i in tensor_or_iterable:
tmp_list.append(recursive_to_device(i, device))
return tuple(tmp_list)
elif isinstance(tensor_or_iterable, Iterable):
for i in tensor_or_iterable:
tensor_or_iterable[i] = recursive_to_device(i, device)
return tensor_or_iterable
else:
raise ValueError(f"Cannot move {type(tensor_or_iterable)} to {device}")


def get_dataset_for_model(
model_name_or_path: str,
dataset_name: str,
Expand Down
110 changes: 84 additions & 26 deletions src/brevitas_examples/llm/llm_quant/eval.py
Original file line number Diff line number Diff line change
@@ -1,25 +1,39 @@
"""
Adapted from https://github.com/IST-DASLab/gptq, released under the following LICENSE:
Adapted from https://github.com/huggingface/optimum-amd, released under the following LICENSE:
Copyright 2023 IST-DASLab
MIT License
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Copyright (c) 2023 Hugging Face
http://www.apache.org/licenses/LICENSE-2.0
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""

import random
from typing import Any, Dict, List

import numpy as np
import torch
from torch import nn
from tqdm import tqdm

from brevitas_examples.llm.llm_quant.data_utils import recursive_to_device


def create_validation_dataloader(data, seqlen, device):
nsamples = data['input_ids'].numel() // seqlen
Expand All @@ -32,19 +46,63 @@ def create_validation_dataloader(data, seqlen, device):


@torch.no_grad()
def model_eval(model, valenc, seqlen):
nsamples = len(valenc)
with torch.no_grad():
nlls = []
for inps in valenc:
lm_logits = model(**inps)['logits']
shift_logits = lm_logits[:, :-1, :].contiguous()
dev = shift_logits.device
shift_labels = inps['input_ids'][:, 1:].to(dev)
shift_logits = shift_logits.to(dev)
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
neg_log_likelihood = loss.float() * seqlen
nlls.append(neg_log_likelihood)
ppl = torch.exp(torch.stack(nlls).sum() / (nsamples * seqlen))
def compute_perplexity(
model: torch.nn.Module,
data: List[Dict],
context_length: int,
tokenizer: Any,
seed: int = 0):
random.seed(seed)
np.random.seed(seed)
torch.random.manual_seed(seed)

model = model.eval()

cross_entropy_loss = nn.CrossEntropyLoss()

nlls = []
for sample in tqdm(data, desc="Computing perplexity..."):
sample_length = sample["input_ids"].shape[1]
for start_index in range(0, sample_length, context_length * 2):
end_index = min(start_index + sample_length, sample_length - 1)

subsample = {
"input_ids": sample["input_ids"][:, start_index:end_index + 1],
"attention_mask": sample["attention_mask"][:, start_index:end_index + 1],}

# In case we are using torch.fx, we can not have optional inputs, and we have traced the model with past_key_values inputs, thus we need them here as well.
if "past_key_values" in sample and isinstance(model, torch.fx.GraphModule):
subsample["past_key_values"] = sample["past_key_values"]

# Add BOS token.
if tokenizer.bos_token_id is not None:
subsample["input_ids"][:, 0] = tokenizer.bos_token_id

use_accelerate = hasattr(model, "hf_device_map")
if not use_accelerate or (use_accelerate and not hasattr(model, "_hf_hook")):
device = next(model.parameters()).device
for name, val in subsample.items():
subsample[name] = recursive_to_device(val, device)
else:
# In accelerate by default `io_same_device=True`, and here we want the of the model output on device.
device = model._hf_hook.execution_device
for name, val in subsample.items():
subsample[name] = recursive_to_device(val, device)

lm_logits = model(**subsample)["logits"]

reference_labels = subsample["input_ids"][:, context_length:]

shift_logits = lm_logits[:, context_length - 1:-1]

# Fuse batch and sequence length dimensions.
reference_labels = reference_labels.view(reference_labels.shape[-1])
shift_logits = shift_logits.view(-1, shift_logits.shape[-1])

loss = cross_entropy_loss(shift_logits, reference_labels)

nlls.append(loss)

ppl = torch.exp(torch.stack(nlls).mean())

return ppl
2 changes: 1 addition & 1 deletion src/brevitas_examples/llm/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,6 @@
from warnings import warn

import numpy as np
from optimum.amd.brevitas.data_utils import compute_perplexity
from optimum.exporters.onnx import onnx_export_from_model
import torch
from transformers import AutoModelForCausalLM
Expand All @@ -30,6 +29,7 @@
from brevitas_examples.llm.llm_quant.data_utils import get_dataset_for_model
from brevitas_examples.llm.llm_quant.equalize import apply_act_equalization
from brevitas_examples.llm.llm_quant.equalize import apply_weight_equalization
from brevitas_examples.llm.llm_quant.eval import compute_perplexity
from brevitas_examples.llm.llm_quant.export import BlockQuantProxyLevelManager
from brevitas_examples.llm.llm_quant.export import brevitas_proxy_export_mode
from brevitas_examples.llm.llm_quant.gpxq import apply_gpfq
Expand Down
1 change: 0 additions & 1 deletion tests/brevitas_examples/test_llm.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,6 @@

from brevitas import config
from brevitas import torch_version
# LLM example depends on optimum-amd, which requires PyTorch>=2.2
from brevitas_examples.llm.main import main
from brevitas_examples.llm.main import parse_args
from tests.marker import jit_disabled_for_export
Expand Down

0 comments on commit 1ca8d7a

Please sign in to comment.