Skip to content
This repository has been archived by the owner on Aug 6, 2024. It is now read-only.

Commit

Permalink
docs(architecture docs): update docs content
Browse files Browse the repository at this point in the history
  • Loading branch information
lxd1190 committed Nov 7, 2018
1 parent 86569e6 commit e3167d2
Show file tree
Hide file tree
Showing 3 changed files with 16 additions and 12 deletions.
2 changes: 1 addition & 1 deletion README.en.md
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
![](docs/images/Metis_logo.png)

[![license](http://img.shields.io/badge/license-BSD3-blue.svg)](https://github.com/tencent/Metis/master/LICENSE.TXT)
[![Release Version](https://img.shields.io/badge/release-0.1.0-red.svg)](https://github.com/tencent/Metis/releases)
[![Release Version](https://img.shields.io/badge/release-0.2.0-red.svg)](https://github.com/tencent/Metis/releases)
[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg)](https://github.com/tencent/Metis/pulls)

The name **Metis** is taken from the Greek goddess of wisdom, Metis, which is a collection of application practices in the AIOps field. It mainly solves the problem of intelligent operation and maintenance in terms of quality, efficiency and cost. The current version of the open source time series anomaly detection learnware is to solve the anomaly detection problem of time series data from the perspective of machine learning.
Expand Down
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
![](docs/images/Metis_logo.png)

[![license](http://img.shields.io/badge/license-BSD3-blue.svg)](https://github.com/tencent/Metis/master/LICENSE.TXT)
[![Release Version](https://img.shields.io/badge/release-0.1.0-red.svg)](https://github.com/tencent/Metis/releases)
[![Release Version](https://img.shields.io/badge/release-0.2.0-red.svg)](https://github.com/tencent/Metis/releases)
[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg)](https://github.com/tencent/Metis/pulls)

**Metis** 这个名字取自希腊神话中的智慧女神墨提斯(Metis),它是一系列AIOps领域的应用实践集合。主要解决在质量、效率、成本方面的智能运维问题。当前版本开源的时间序列异常检测学件,是从机器学习的角度来解决时序数据的异常检测问题。
Expand Down
24 changes: 14 additions & 10 deletions docs/architecture.md
Original file line number Diff line number Diff line change
@@ -1,21 +1,25 @@
## 时间序列异常检测学件的架构
## 时间序列异常检测学件的架构

![code_arch.png](images/code_arch.png)

时间序列异常检测学件的整体分层涉及,可以分为以下四层
时间序列异常检测工程的整体分层,可以分为以下五层

1. **数据层(DB)**:存储检测异常信息、样本信息、任务信息等
1. **数据层(DB)**:存储检测异常信息、样本信息、任务信息等

2. **服务层(server)**服务层划分为四大模块
2. **服务层(SERVICE)**服务层划分为两大模块

1. **数据驱动模块DAO**: 封装了和DB层常见的数据操作接口。
1. **数据驱动模块DAO**: 封装了和DB层常见的数据操作接口。

2. **特征计算模块feature**提供三类时间序列的特征(统计特征、拟合特征、分类特征)用于对时序数据进行特征提取,在监督学习和训练中使用
2. **业务模块service**完成API层的具体业务逻辑

3. **算法模块feature**: 提供常见的几种机器学习算法封装(统计判别算法、指数移动平均算法、多项式算法、GBDT和xgboost等)用于对序数据进行联合仲裁检测。
3. **学件层(LEARNWARE)**:学件层划分为三大模块

1. **检测模块detect**: 提供时间序列异常检测接口

4. **业务模块business**业务模块是基于原子接口封装,完成API层的具体业务逻辑
2. **特征计算模块features**提供三类时间序列的特征(统计特征、拟合特征、分类特征)用于对时序数据进行特征提取,在监督学习和训练中使用

3. **接口层(api)**: 提供API能力,时间序列异常检测接口和WEB管理的操作接口。
3. **算法模块algorithm**: 提供常见的几种机器学习算法封装(统计判别算法、指数移动平均算法、多项式算法、GBDT和xgboost等)用于对序数据进行联合仲裁检测。

4. **接口层(API)**: 提供API能力,时间序列异常检测接口和WEB管理的操作接口。

4. **WEB层(web)**: 系统提供的WEB服务,通过服务界面,用户可以进行异常查询、打标标注、样本库管理、模型训练等操作。
5. **WEB层(WEB)**: 系统提供的WEB服务,通过服务界面,用户可以进行异常查询、打标标注、样本库管理、模型训练等操作。

0 comments on commit e3167d2

Please sign in to comment.