Skip to content

This repo contains the code and data for "MEGA-Bench Scaling Multimodal Evaluation to over 500 Real-World Tasks"

License

Notifications You must be signed in to change notification settings

TIGER-AI-Lab/MEGA-Bench

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

55 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

MEGA-Bench: Scaling Multimodal Evaluation to over 500 Real-World Tasks

arXiv Project Page Dataset Leaderboard

πŸ”” News

πŸ”₯[2024-10-18]: Data and evaluation code are now available. We will continue to add evaluation pipelines for more models.

πŸ“„[2024-10-14]: Paper released on arXiv.

Table of Contents

  1. Introduction
  2. Setup
  3. Evaluation
  4. Contact and Citation

Introduction

MEGA-Bench is an evaluation suite that scales multimodal evaluation to over 500 real-world tasks, addressing the highly heterogeneous daily use cases of end users. Our objective is to optimize for a set of high-quality data samples that cover a diverse and rich set of multimodal tasks while enabling cost-effective and accurate model evaluation.

MEGA-Bench Taxonomy Tree

Key features of MEGA-Bench:

  • 505 realistic tasks encompassing over 8,000 samples from 16 expert annotators
  • Wide range of output formats including numbers, phrases, code, LaTeX, coordinates, JSON, free-form, etc.
  • Over 40 metrics developed to evaluate these diverse tasks
  • Fine-grained capability report across multiple dimensions (e.g., application, input type, output format, skill)
  • Interactive visualization of model capabilities

Unlike existing benchmarks that unify problems into standard multi-choice questions, MEGA-Bench embraces the diversity of real-world tasks and their output formats. This allows for a more comprehensive evaluation of vision-language models across various dimensions.

Setup

Clone the repository by:

# Clone the repository with the task examples
git clone https://github.com/TIGER-AI-Lab/MEGA-Bench.git
# Or skip the task examples host by Git LFS
GIT_LFS_SKIP_SMUDGE=1 git clone https://github.com/TIGER-AI-Lab/MEGA-Bench.git

cd MEGA-Bench

Dataset download

The MEGA-Bench dataset is now available on Hugging Face:

MEGA-Bench Dataset

Since the Hugging Face Datasets viewer does not support visualizing large rows with many images, we chose to only keep the file paths of images/videos in the HF dataset. Please download the data, unzip it, and set up the data path properly using the following commands:

wget https://huggingface.co/datasets/TIGER-Lab/MEGA-Bench/resolve/main/data.zip?download=true -O data.zip
unzip data.zip -d megabench

Environment Setup

First, set up the environment with the following commands. The packages are mainly for the evaluation metrics used in MEGA-Bench.

conda create -n megabench python=3.12
conda activate megabench
pip install -r requirements.txt
python -c "import nltk; nltk.download('wordnet'); nltk.download('punkt')"

Evaluation

πŸ“Œ Note: Due to slight reorganization of the prompt and cleanup for uploading to Hugging Face Datasets, the evaluation results from this repository may differ slightly from those reported in our paper and leaderboard. However, the overall performance trend and capability report should remain consistent.

For several popular models, we convert the evaluation results used in our paper to the format of the this repository, please find them in megabench/results/paper_results_converted.

The table below lists information about supported models in this repository. See megabench/models/model_type.py for the full list. We will add code for more models in the future.

Model Name Type name for command line Dependency
GPT-4o GPT_4O_0513, GPT_4O_0806 OpenAI API
GPT-4o-mini GPT_4O_MINI OpenAI API
Claude 3 Haiku CLAUDE_3_HAIKU Anthropic API
Claude 3.5 Sonnet CLAUDE_3_5_SONNET Anthropic API
Gemini 1.5 Pro GEMINI_PRO, GEMINI_PRO_002 Google API
Gemini 1.5 Flash GEMINI_FLASH, GEMINI_FLASH_002 Google API
Qwen2-VL-72B QWEN2_VL_72B vLLM
Qwen2-VL-7B QWEN2_VL_7B vLLM
InternVL2-Llama3-76B INTERNVL2_LLAMA3_76B vLLM
InternVL2-8B INTERNVL2_8B vLLM
Llava-OneVision-72B LLAVA_ONEVISION_72B HF Transformers
Llava-OneVision-7B LLAVA_ONEVISION_7B HF Transformers
Pixtral-12B PIXTRAL_12B vLLM
Phi-3.5-vision PHI_3_5_VISION HF Transformers

Proprietary Models (GPT, Claude, Gemini)

To run with GPT or Claude, set up the OpenAI or Anthropic API key:

export OPENAI_API_KEY=<your_openai_api_key>
export ANTHROPIC_API_KEY=<your_anthropic_api_key>
export GOOGLE_API_KEY=<your_gemini_api_key>

Example commands for running evaluation with GPT-4o (0513) or Claude-3.5-Sonnet on the Core subset, using multiprocessing with 2 subprocesses:

cd megabench

# GPT-4o (0513)
python main.py --model_type GPT_4O_0513 --output_file results/GPT-4o-0513/all_query_responses.json --print_response --dataset_subset_name core --multiprocess --processes 2

# Claude-3.5-Sonnet
python main.py --model_type CLAUDE_3_5_SONNET --output_file results/Claude-3.5-Sonnet/all_query_responses.json --print_response --dataset_subset_name core --multiprocess --processes 2

# Gemini-1.5-Pro-002
python main.py --model_type GEMINI_PRO_002 --output_file results/Gemini-1.5-Pro-002/all_query_responses.json --print_response --dataset_subset_name core --multiprocess --processes 2 

To run with the Open-ended subset, set --dataset_subset_name open. The evaluation processor will evaluate all tasks in the response output file. If you only want to evaluate the Core subset, you should set different output file paths for Core and Open-ended subsets.

To evaluate the Open-ended subset, you need to set up the OpenAI API key first.

Open-source Models (Qwen2VL, InternVL2, Llava-OneVision)

To run with Qwen2VL or InternVL2, first install the latest vllm:

pip install vllm -U

Example commands for running evaluation with Qwen2VL or InternVL2 on the Core subset:

cd megabench

# InternVL2-8B
python main.py --model_type INTERNVL2_8B \
   --output_file results/InternVL2_8B/all_query_responses.json \
   --print_response --ngpus 4 --gpu_utils 0.9 \
   --dataset_name TIGER-Lab/MEGA-Bench \
   --dataset_subset_name core

# Qwen2VL-7B
python main.py --model_type QWEN2_VL_7B \
   --output_file results/Qwen2_VL_7B/all_query_responses.json \
   --print_response --ngpus 4 --gpu_utils 0.9 \
   --dataset_name TIGER-Lab/MEGA-Bench \
   --dataset_subset_name core

To run with Llava-OneVision, first install the [llava-next] repositary (https://github.com/LLaVA-VL/LLaVA-NeXT) (We found the version supported by vllm got much lower performance than the official one). Then run the following command:

python main.py --model_type LLAVA_ONEVISION_7B \
   --output_file results/Llava_OneVision_7B/all_query_responses.json \
   --print_response --dataset_subset_name core

If you want to evaluate on the open set, change it to --dataset_subset_name open.

Get multi-dimensional breakdown analysis

We provide a script for multi-dimensional breakdown analysis (results like on our leaderboard hosted on Hugging Face).

For example, the results in results/Qwen2_VL_7B/ are generated by running the following commands sequentially. The files in results/Qwen2_VL_7B/analysis/ are the task-level evaluation results and the multi-dimensional breakdown analysis results for all keywords over the 5 dimensions (application, skills, input format, output format, and visual input number).

# Run the query for the Core subset, don't evaluate at this time
python main.py --model_type QWEN2_VL_7B \
   --output_file results/Qwen2_VL_7B/all_query_responses.json \
   --print_response --ngpus 4 --gpu_utils 0.9 \
   --dataset_name TIGER-Lab/MEGA-Bench \
   --dataset_subset_name core  --query_only

# Run the query for the Open subset, run evaluation after finishing all queries
python main.py --model_type QWEN2_VL_7B \
   --output_file results/Qwen2_VL_7B/all_query_responses.json \
   --print_response --ngpus 4 --gpu_utils 0.9 \
   --dataset_name TIGER-Lab/MEGA-Bench \
   --dataset_subset_name open

# Run the multi-dimensional breakdown analysis
python tools/derive_breakdown_results.py --input_dir results/Qwen2_VL_7B/

Ground truth sanity check

The ground-truth sanity check is to check the validity of our rule-based evaluation metrics (for the Core tasks). This basically creates an "oracle model" that composes its response using the ground truth answer, and we evaluate the results to see if the oracle model can get full scores - not getting full scores means the evaluation metrics are not working properly.

Run the ground-truth sanity check with the following command:

python main.py \
   --model_type GROUND_TRUTH_ORACLE_SANITY_CHECK \
   --output_file results/Ground_truth_oracle_sanity_check/all_query_responses.json \
   --force_regenerate \
   --multiprocess --processes 48 \
   --dataset_name TIGER-Lab/MEGA-Bench \
   --dataset_subset_name core

This should produce full scores (i.e., 1.0) for all Core tasks, which helps verify the validity of the metric implementations.

Detailed explanation of command line arguments

The launch script main.py has the following arguments:

Argument Description Default
--model_type Type of model to use "GPT_4O_MINI"
--model_path Custom model path for local open-source models None
--ngpus Number of GPUs to use (for vllm models) None
--gpu_utils GPU memory utilization (0.0 to 1.0, for vllm models) None
--output_file Path for query responses output None
--output_score_filename Filename for evaluation scores "data_with_scores.json"
--task_name Name of a specific task to process, if specified, the pipeline will run only a single task None
--force_regenerate Force regeneration of answers False
--query_only Perform only the model query, without evaluation False
--evaluation_only Perform only the evaluation step False
--multiprocess Enable multiprocessing (for API-based proprietary models) False
--processes Number of processes for multiprocessing 2
--print_response Print model's response (helpful for debugging) False
--dataset_name Name of the dataset "TIGER-Lab/MEGA-Bench"
--dataset_subset_name Subset of the dataset to use "core"

Evaluate Open-ended tasks with a VLM judge

By default, we use GPT-4o-2024-08-06 as the VLM judge to evaluate the Open-ended tasks. If you want to use a different VLM model for evaluating the Open subset, you can set the following environment variables:

export MEGABENCH_OPEN_API_KEY=<your_api_key>
export MEGABENCH_OPEN_API_MODEL=<your_vlm_model_name>
export MEGABENCH_OPEN_API_URL=<your_vlm_api_url>

Contact and Citation

For any questions or concerns, please contact:

If you find this work useful for your research, please consider citing our paper:

@article{chen2024mega-bench,
  title={MEGA-Bench: Scaling Multimodal Evaluation to over 500 Real-World Tasks},
  author={Chen, Jiacheng and Liang, Tianhao and Siu, Sherman and Wang, Zhengqing and Wang, Kai and Wang, Yubo and Ni, Yuansheng and Zhu, Wang and Jiang, Ziyan and Lyu, Bohan and Jiang, Dongfu and He, Xuan and Liu, Yuan and Hu, Hexiang and Yue, Xiang and Chen, Wenhu},
  journal={arXiv preprint arXiv:2410.10563},
  year={2024},
}

About

This repo contains the code and data for "MEGA-Bench Scaling Multimodal Evaluation to over 500 Real-World Tasks"

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages