-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
117 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,117 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"This exercise shows how to use Monte Carlo to approximate integration, $F = \\int_{0}^{1} sin (x) dx$ and $F = \\int_{2}^{4} sin (x) dx$" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np\n", | ||
"import chaospy as cp\n", | ||
"from matplotlib.pyplot import *\n", | ||
"\n", | ||
"np.random.seed(11)\n", | ||
"# declare function to integrate via Monte Carlo sampling\n", | ||
"func = lambda x: np.sin(x)\n", | ||
"\n", | ||
"# declare vector with number of samples\n", | ||
"N = [10, 100, 1000, 10000, 100000, 1000000, 10000000] #, 10000000, 100000000\n", | ||
"\n", | ||
"I_hat = np.zeros(len(N))\n", | ||
"I = np.cos(2) - np.cos(4)\n", | ||
"est_std_dev = np.zeros(len(N))\n", | ||
"rms = np.zeros(len(N))\n", | ||
"\n", | ||
"log_dec = np.zeros(len(N))\n", | ||
"sqrt_dec = np.zeros(len(N))\n", | ||
"linear_dec = np.zeros(len(N))\n", | ||
"quad_dec = np.zeros(len(N))\n", | ||
"\n", | ||
"# define new bounds\n", | ||
"a = 2\n", | ||
"b = 4\n", | ||
"\n", | ||
"zeroone_sampling = True\n", | ||
"# for each N, perform Monte Carlo integration\n", | ||
"for i, n in enumerate(N):\n", | ||
"\n", | ||
" if zeroone_sampling:\n", | ||
" # draw uniform samples in [0, 1]\n", | ||
" distr_w = cp.Uniform(0, 1)\n", | ||
" samples_01 = distr_w.sample(size=n)\n", | ||
" # transform to [a, b]\n", | ||
" samples = a + (b-a)*samples_01\n", | ||
" # approximate the integral as the expectation of the underlying function w.r.t. the uniform distribution\n", | ||
" # write the sample in [a, b] in terms of the generated sampled in [0, 1]\n", | ||
" I_hat[i] = (b-a)*np.mean(func(samples))\n", | ||
" # approximate the standard deviation of the estimation\n", | ||
" est_std_dev[i] = np.sqrt(np.var(func(samples), ddof=1))/np.sqrt(n)\n", | ||
" else:\n", | ||
" distr_w = cp.Uniform(2, 4)\n", | ||
" samples = distr_w.sample(size=n)\n", | ||
" I_hat[i] = (b-a)*np.mean(func(samples))\n", | ||
" est_std_dev[i] = np.sqrt( np.var(func(samples), ddof=1))/np.sqrt(n)\n", | ||
"\n", | ||
" rms[i] = np.abs(I_hat[i] - I)\n", | ||
"\n", | ||
" if i == 0:\n", | ||
" log_dec[0] = est_std_dev[0]\n", | ||
" sqrt_dec[0] = est_std_dev[0]\n", | ||
" linear_dec[0] = est_std_dev[0]\n", | ||
" quad_dec[0] = est_std_dev[0]\n", | ||
" else:\n", | ||
" log_dec[i] = log_dec[i-1] / np.log(10)\n", | ||
" sqrt_dec[i] = sqrt_dec[i-1] / np.sqrt(10)\n", | ||
" linear_dec[i] = linear_dec[i-1] / 10\n", | ||
" quad_dec[i] = quad_dec[i-1] / (10**2)\n", | ||
"\n", | ||
" print (I, I_hat[i], rms[i], est_std_dev[i])\n", | ||
"\n", | ||
"# plot results\n", | ||
"loglog(N, est_std_dev, 'r', label='standard error decay')\n", | ||
"loglog(N, rms, 'b', label=r'$\\epsilon$')\n", | ||
"loglog(N, log_dec, 'k--', label=r'log')\n", | ||
"loglog(N, sqrt_dec, 'k-*', label=r'sqrt')\n", | ||
"#loglog(N, linear_dec, 'k-.', label=r'linear')\n", | ||
"#loglog(N, quad_dec, 'k-', label=r'linear')\n", | ||
"legend(loc='best')\n", | ||
"show()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.7.3" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |