forked from vinay-kumar99/Hactoberfest2022
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
188 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,188 @@ | ||
|
||
# coding: utf-8 | ||
|
||
# In[2]: | ||
|
||
|
||
import numpy as np | ||
from sklearn.metrics import accuracy_score | ||
from matplotlib import pyplot as plt | ||
get_ipython().magic('matplotlib inline') | ||
import tensorflow as tf | ||
|
||
|
||
# In[118]: | ||
|
||
|
||
import sys | ||
sys.path.append("../..") | ||
|
||
import matplotlib_utils | ||
from importlib import reload | ||
reload(matplotlib_utils) | ||
|
||
import keras_utils | ||
from keras_utils import reset_tf_session | ||
|
||
|
||
# In[138]: | ||
|
||
|
||
import preprocessed_mnist | ||
X_train, y_train, X_val, y_val, X_test, y_test = preprocessed_mnist.load_dataset_from_file() | ||
|
||
|
||
# In[121]: | ||
|
||
|
||
print("X_train [shape %s] sample patch:\n" % (str(X_train.shape)), X_train[1, 15:20, 5:10]) | ||
print("A closeup of a sample patch:") | ||
plt.imshow(X_train[1, 15:20, 5:10], cmap="Greys") | ||
plt.show() | ||
print("And the whole sample:") | ||
plt.imshow(X_train[1], cmap="Greys") | ||
plt.show() | ||
print("y_train [shape %s] 10 samples:\n" % (str(y_train.shape)), y_train[:10]) | ||
y_train | ||
|
||
|
||
# In[122]: | ||
|
||
|
||
X_train_flat = X_train.reshape((X_train.shape[0], -1)) | ||
print(X_train_flat.shape) | ||
|
||
X_val_flat = X_val.reshape((X_val.shape[0], -1)) | ||
print(X_val_flat.shape) | ||
|
||
|
||
# In[123]: | ||
|
||
|
||
import keras | ||
|
||
y_train_oh = keras.utils.to_categorical(y_train, 10) | ||
y_val_oh = keras.utils.to_categorical(y_val, 10) | ||
|
||
print(y_train_oh.shape) | ||
print(y_train_oh[:3], y_train[:3]) | ||
|
||
|
||
# In[ ]: | ||
|
||
|
||
'''USING LINEAR MODEL''' | ||
|
||
|
||
# In[124]: | ||
|
||
|
||
s = reset_tf_session() | ||
|
||
|
||
# In[125]: | ||
|
||
|
||
W = tf.get_variable("W", shape = (784,10), dtype = tf.float32, trainable = True) | ||
b = tf.get_variable("b", shape = (1,10), dtype = tf.float32, trainable = True) | ||
|
||
|
||
# In[126]: | ||
|
||
|
||
input_X = tf.placeholder(tf.float32, shape = (None, 784)) | ||
input_y = tf.placeholder(tf.int32, shape = (None,10)) | ||
|
||
|
||
# In[127]: | ||
|
||
|
||
logits = input_X @ W + b | ||
probas = tf.nn.softmax(logits) | ||
classes = tf.argmax(probas,axis = 1) | ||
|
||
loss = tf.nn.softmax_cross_entropy_with_logits(labels = input_y, logits = logits) ### cross-entropy loss | ||
|
||
optimizer = tf.train.AdamOptimizer() | ||
step = optimizer.minimize(loss) | ||
|
||
|
||
# In[128]: | ||
|
||
|
||
s.run(tf.global_variables_initializer()) | ||
|
||
BATCH_SIZE = 512 | ||
EPOCHS = 40 | ||
|
||
simpleTrainingCurves = matplotlib_utils.SimpleTrainingCurves("cross-entropy", "accuracy") | ||
|
||
for epoch in range(EPOCHS): | ||
|
||
batch_losses = [] | ||
for batch_start in range(0, X_train_flat.shape[0], BATCH_SIZE): | ||
_, batch_loss = s.run([step, loss], {input_X: X_train_flat[batch_start:batch_start+BATCH_SIZE], | ||
input_y: y_train_oh[batch_start:batch_start+BATCH_SIZE]}) | ||
batch_losses.append(batch_loss) | ||
|
||
batch_losses[-1] = np.array(list(batch_losses[-1]) + list(np.zeros((176,)))) | ||
train_loss = np.mean(batch_losses) | ||
val_loss = s.run(loss, {input_X: X_val_flat, input_y: y_val_oh} | ||
val_loss = np.mean(val_loss) | ||
train_accuracy = accuracy_score(y_train, s.run(classes, {input_X: X_train_flat})) | ||
valid_accuracy = accuracy_score(y_val, s.run(classes, {input_X: X_val_flat})) | ||
|
||
|
||
# In[ ]: | ||
|
||
|
||
'''USING MLP''' | ||
|
||
|
||
# In[130]: | ||
|
||
|
||
s = reset_tf_session() | ||
input_X = tf.placeholder(tf.float32, shape = (None, 784)) | ||
input_y = tf.placeholder(tf.int32, shape = (None,10)) | ||
|
||
|
||
# In[134]: | ||
|
||
|
||
hidden_1 = tf.layers.dense(input_X , 256, activation = tf.nn.sigmoid) | ||
hidden_2 = tf.layers.dense(hidden_1, 256, activation = tf.nn.sigmoid) | ||
logits = tf.layers.dense(hidden_2, 10) | ||
probas = tf.layers.dense(hidden_2, 10, activation = tf.nn.sigmoid) | ||
classes = tf.argmax(probas, axis = 1) | ||
loss = tf.nn.softmax_cross_entropy_with_logits(labels = input_y, logits = logits) | ||
optimizer = tf.train.AdamOptimizer() | ||
step = optimizer.minimize(loss) | ||
|
||
|
||
# In[135]: | ||
|
||
|
||
s.run(tf.global_variables_initializer()) | ||
|
||
BATCH_SIZE = 512 | ||
EPOCHS = 40 | ||
|
||
simpleTrainingCurves = matplotlib_utils.SimpleTrainingCurves("cross-entropy", "accuracy") | ||
|
||
for epoch in range(EPOCHS): | ||
|
||
batch_losses = [] | ||
for batch_start in range(0, X_train_flat.shape[0], BATCH_SIZE): | ||
_, batch_loss = s.run([step, loss], {input_X: X_train_flat[batch_start:batch_start+BATCH_SIZE], | ||
input_y: y_train_oh[batch_start:batch_start+BATCH_SIZE]}) | ||
|
||
batch_losses.append(batch_loss) | ||
|
||
batch_losses[-1] = np.array(list(batch_losses[-1]) + list(np.zeros((176,)))) | ||
train_loss = np.mean(batch_losses) | ||
val_loss = s.run(loss, {input_X: X_val_flat, input_y: y_val_oh}) # this part is usually small | ||
val_loss = np.mean(val_loss) | ||
train_accuracy = accuracy_score(y_train, s.run(classes, {input_X: X_train_flat})) # this is slow and usually skipped | ||
valid_accuracy = accuracy_score(y_val, s.run(classes, {input_X: X_val_flat})) | ||
|