-
Notifications
You must be signed in to change notification settings - Fork 68
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
43 changed files
with
5,752 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
*.png | ||
*.ply |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,120 @@ | ||
import os, struct | ||
import numpy as np | ||
import zlib | ||
import imageio | ||
import cv2 | ||
|
||
COMPRESSION_TYPE_COLOR = {-1:'unknown', 0:'raw', 1:'png', 2:'jpeg'} | ||
COMPRESSION_TYPE_DEPTH = {-1:'unknown', 0:'raw_ushort', 1:'zlib_ushort', 2:'occi_ushort'} | ||
|
||
class RGBDFrame(): | ||
|
||
def load(self, file_handle): | ||
self.camera_to_world = np.asarray(struct.unpack('f'*16, file_handle.read(16*4)), dtype=np.float32).reshape(4, 4) | ||
self.timestamp_color = struct.unpack('Q', file_handle.read(8))[0] | ||
self.timestamp_depth = struct.unpack('Q', file_handle.read(8))[0] | ||
self.color_size_bytes = struct.unpack('Q', file_handle.read(8))[0] | ||
self.depth_size_bytes = struct.unpack('Q', file_handle.read(8))[0] | ||
self.color_data = b''.join(struct.unpack('c'*self.color_size_bytes, file_handle.read(self.color_size_bytes))) | ||
self.depth_data = b''.join(struct.unpack('c'*self.depth_size_bytes, file_handle.read(self.depth_size_bytes))) | ||
|
||
|
||
def decompress_depth(self, compression_type): | ||
if compression_type == 'zlib_ushort': | ||
return self.decompress_depth_zlib() | ||
else: | ||
raise | ||
|
||
|
||
def decompress_depth_zlib(self): | ||
return zlib.decompress(self.depth_data) | ||
|
||
|
||
def decompress_color(self, compression_type): | ||
if compression_type == 'jpeg': | ||
return self.decompress_color_jpeg() | ||
else: | ||
raise | ||
|
||
|
||
def decompress_color_jpeg(self): | ||
return imageio.imread(self.color_data) | ||
|
||
|
||
class SensorData: | ||
|
||
def __init__(self, filename): | ||
self.version = 4 | ||
self.load(filename) | ||
|
||
|
||
def load(self, filename): | ||
with open(filename, 'rb') as f: | ||
version = struct.unpack('I', f.read(4))[0] | ||
assert self.version == version | ||
strlen = struct.unpack('Q', f.read(8))[0] | ||
self.sensor_name = b''.join(struct.unpack('c'*strlen, f.read(strlen))) | ||
self.intrinsic_color = np.asarray(struct.unpack('f'*16, f.read(16*4)), dtype=np.float32).reshape(4, 4) | ||
self.extrinsic_color = np.asarray(struct.unpack('f'*16, f.read(16*4)), dtype=np.float32).reshape(4, 4) | ||
self.intrinsic_depth = np.asarray(struct.unpack('f'*16, f.read(16*4)), dtype=np.float32).reshape(4, 4) | ||
self.extrinsic_depth = np.asarray(struct.unpack('f'*16, f.read(16*4)), dtype=np.float32).reshape(4, 4) | ||
self.color_compression_type = COMPRESSION_TYPE_COLOR[struct.unpack('i', f.read(4))[0]] | ||
self.depth_compression_type = COMPRESSION_TYPE_DEPTH[struct.unpack('i', f.read(4))[0]] | ||
self.color_width = struct.unpack('I', f.read(4))[0] | ||
self.color_height = struct.unpack('I', f.read(4))[0] | ||
self.depth_width = struct.unpack('I', f.read(4))[0] | ||
self.depth_height = struct.unpack('I', f.read(4))[0] | ||
self.depth_shift = struct.unpack('f', f.read(4))[0] | ||
num_frames = struct.unpack('Q', f.read(8))[0] | ||
self.frames = [] | ||
for i in range(num_frames): | ||
frame = RGBDFrame() | ||
frame.load(f) | ||
self.frames.append(frame) | ||
|
||
|
||
def export_depth_images(self, output_path, image_size=None, frame_skip=1): | ||
if not os.path.exists(output_path): | ||
os.makedirs(output_path) | ||
print('exporting', len(self.frames)//frame_skip, ' depth frames to', output_path) | ||
for f in range(0, len(self.frames), frame_skip): | ||
depth_data = self.frames[f].decompress_depth(self.depth_compression_type) | ||
depth = np.fromstring(depth_data, dtype=np.uint16).reshape(self.depth_height, self.depth_width) | ||
if image_size is not None: | ||
depth = cv2.resize(depth, (image_size[1], image_size[0]), interpolation=cv2.INTER_NEAREST) | ||
imageio.imwrite(os.path.join(output_path, str(f) + '.png'), depth) | ||
|
||
|
||
def export_color_images(self, output_path, image_size=None, frame_skip=1): | ||
if not os.path.exists(output_path): | ||
os.makedirs(output_path) | ||
print('exporting', len(self.frames)//frame_skip, 'color frames to', output_path) | ||
for f in range(0, len(self.frames), frame_skip): | ||
color = self.frames[f].decompress_color(self.color_compression_type) | ||
if image_size is not None: | ||
color = cv2.resize(color, (image_size[1], image_size[0]), interpolation=cv2.INTER_NEAREST) | ||
imageio.imwrite(os.path.join(output_path, str(f) + '.jpg'), color) | ||
|
||
|
||
def save_mat_to_file(self, matrix, filename): | ||
with open(filename, 'w') as f: | ||
for line in matrix: | ||
np.savetxt(f, line[np.newaxis], fmt='%f') | ||
|
||
|
||
def export_poses(self, output_path, frame_skip=1): | ||
if not os.path.exists(output_path): | ||
os.makedirs(output_path) | ||
print('exporting', len(self.frames)//frame_skip, 'camera poses to', output_path) | ||
for f in range(0, len(self.frames), frame_skip): | ||
self.save_mat_to_file(self.frames[f].camera_to_world, os.path.join(output_path, str(f) + '.txt')) | ||
|
||
|
||
def export_intrinsics(self, output_path): | ||
if not os.path.exists(output_path): | ||
os.makedirs(output_path) | ||
print('exporting camera intrinsics to', output_path) | ||
self.save_mat_to_file(self.intrinsic_color, os.path.join(output_path, 'intrinsic_color.txt')) | ||
self.save_mat_to_file(self.extrinsic_color, os.path.join(output_path, 'extrinsic_color.txt')) | ||
self.save_mat_to_file(self.intrinsic_depth, os.path.join(output_path, 'intrinsic_depth.txt')) | ||
self.save_mat_to_file(self.extrinsic_depth, os.path.join(output_path, 'extrinsic_depth.txt')) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,47 @@ | ||
# Use the numpy library. | ||
import numpy as np | ||
|
||
|
||
def compute_metrics(pred, label): | ||
"""Compute metrics like True/False Positive, True/False Negative.` | ||
MUST HAVE ONLY 2 CLASSES: BACKGROUND, OBJECT. | ||
Args: | ||
pred (numpy.ndarray): Prediction, one-hot encoded. Shape: [2, H, W], dtype: uint8 | ||
label (numpy.ndarray): Ground Truth, one-hot encoded. Shape: [H, W], dtype: uint8 | ||
Returns: | ||
float: IOU, TP, TN, FP, FN | ||
""" | ||
if len(pred.shape) > 3: | ||
raise ValueError("pred should have shape [2, H, W], got: {}".format(pred.shape)) | ||
if len(label.shape) > 2: | ||
raise ValueError("label should have shape [H, W], got: {}".format(label.shape)) | ||
|
||
total_pixels = pred.shape[0] * pred.shape[1] | ||
|
||
tp = np.sum(np.logical_and(pred == 1, label > 0)) | ||
tn = np.sum(np.logical_and(pred == 0, label == 0)) | ||
fp = np.sum(np.logical_and(pred == 1, label == 0)) | ||
fn = np.sum(np.logical_and(pred == 0, label > 0)) | ||
|
||
if (tp + tn + fp + fn) != total_pixels: | ||
raise ValueError('The number of total pixels ({}) and sum of tp,fp,tn,fn ({}) is not equal'.format( | ||
total_pixels, (tp + tn + fp + fn))) | ||
iou = tp / (tp + fp + fn) | ||
|
||
_tp = tp / np.sum(label == 1) | ||
|
||
tp_rate = (tp / (tp + fn)) * 100 | ||
fp_rate = (fp / (fp + tn)) * 100 | ||
tn_rate = (tn / (tn + fp)) * 100 | ||
fn_rate = (fn / (fn + tp)) * 100 | ||
|
||
return iou, tp_rate, tn_rate, fp_rate, fn_rate | ||
|
||
height, width = 20, 20 | ||
x = np.zeros((height, width)) | ||
y = np.ones((height, width)) | ||
|
||
x[:10, :10] = 1 | ||
|
||
iou, tp_rate, tn_rate, fp_rate, fn_rate = compute_metrics(x, y) | ||
print(iou, tp_rate, tn_rate, fp_rate, fn_rate) |
Oops, something went wrong.