forked from JYNi16/Monte-Carlo-Algorithm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
193 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,193 @@ | ||
import numpy as np | ||
|
||
import matplotlib.pylab as plt | ||
import matplotlib.animation as animation | ||
import matplotlib.patches as patches | ||
from matplotlib.collections import PatchCollection | ||
import matplotlib.cm as cm | ||
from matplotlib.colors import Normalize | ||
|
||
|
||
def cos(angle): | ||
"""transforms angle from [0,1] to cos(2pi[0,1])""" | ||
return np.cos(2 * np.pi * angle) | ||
|
||
|
||
def sin(angle): | ||
"""transforms angle from [0,1] to sin(2pi[0,1])""" | ||
return np.sin(2 * np.pi * angle) | ||
|
||
|
||
class XYMetropolis: | ||
|
||
def __init__(self, | ||
lattice_shape, | ||
beta=1, | ||
J=5, | ||
random_state=5, | ||
initial_state='hot'): | ||
self.beta = beta | ||
self.J = J | ||
self.rs = np.random.RandomState(seed=random_state) | ||
|
||
# matrix of lattice angles | ||
if initial_state == 'hot': | ||
self.A = self.rs.rand(*lattice_shape) | ||
elif initial_state == 'cold': | ||
self.A = np.zeros(lattice_shape) | ||
else: | ||
raise ValueError('initial_state must be cold or hot') | ||
self.time = 0 | ||
|
||
# Matrix of winding numbers | ||
self.V = np.zeros((lattice_shape[0] - 1, lattice_shape[1] - 1)) | ||
|
||
# Correlations (since we have torus topology, we can start from the left top) | ||
self.corr_range = int(self.A.shape[0] / 2) | ||
|
||
# Correlation array of length corr_range | ||
self.C = [] | ||
|
||
# Magnetization | ||
self.M = 0 | ||
|
||
# Squared magnetization | ||
self.M2 = 0 | ||
|
||
# Vortex density | ||
self.Vdensity = 0 | ||
|
||
def step(self): | ||
"""Perform one step of metropolis algorithm""" | ||
pos = tuple(self.rs.randint(_) for _ in self.A.shape) | ||
value = self.rs.rand() | ||
delta_H = self.dH(pos, value) | ||
if (delta_H < 0) or (self.rs.rand() < np.exp(-self.beta * delta_H)): | ||
self.A[pos] = value | ||
|
||
def dH(self, pos, val): | ||
"""Calculate delta energy""" | ||
delta = 0 | ||
old_val = self.A[pos] | ||
pos_list = list(pos) | ||
incr_delta = lambda pos: cos(self.A[pos] - val) - cos(self.A[pos] - old_val) | ||
for i in range(len(self.A.shape)): | ||
pos_list[i] += 1 | ||
pos_list[i] %= self.A.shape[i] | ||
delta += incr_delta(tuple(pos_list)) | ||
pos_list[i] -= 2 | ||
pos_list[i] %= self.A.shape[i] | ||
delta += incr_delta(tuple(pos_list)) | ||
pos_list[i] += 1 | ||
pos_list[i] %= self.A.shape[i] | ||
return -delta * self.J | ||
|
||
def get_V(self): | ||
"""Update matrix of winding numbers (Vortex matrix)""" | ||
for i in range(self.V.shape[0]): | ||
for j in range(self.V.shape[1]): | ||
|
||
# create list of angles from the below-down square | ||
a = [self.A[i, j], | ||
self.A[i, j + 1], | ||
self.A[i + 1, j + 1], | ||
self.A[i + 1, j]] | ||
|
||
# run clockwise and calculate sum of angles | ||
a_sum = 0 | ||
for k in range(len(a)): | ||
d = a[k] - a[(k + 1) % len(a)] | ||
if abs(d) > 0.5: | ||
d -= np.sign(d) | ||
a_sum += d | ||
|
||
self.V[i, j] = a_sum | ||
|
||
return self.V | ||
|
||
def get_Vdensity(self): | ||
self.Vdensity = np.sum(abs(self.V)) / 2 / np.prod(self.A.shape) | ||
return self.Vdensity | ||
|
||
def get_C(self): | ||
"""Update correlations""" | ||
corrs_d = [] # correlations for each dim | ||
self.C = [] | ||
|
||
# compute correlations over each shift (here means distance) | ||
for r in range(int(self.corr_range)): | ||
# and each axis | ||
for d in range(len(self.A.shape)): | ||
# calculate mean over all spins | ||
corr = np.mean(cos(self.A - np.roll(self.A, r, axis=d))) | ||
corrs_d.append(corr) | ||
self.C.append(np.mean(corrs_d)) | ||
return self.C | ||
|
||
def get_M2(self): | ||
"""Get squared magnetization""" | ||
self.M2 = ((np.sum(cos(self.A))) ** 2 + (np.sum(sin(self.A))) ** 2) / (np.prod(self.A.shape)) ** 2 | ||
return self.M2 | ||
|
||
def simulate(self, steps): | ||
for _ in range(steps): | ||
self.step() | ||
self.get_V() | ||
self.get_C() | ||
self.get_M2() | ||
self.get_Vdensity() | ||
|
||
|
||
def visualise(sim): | ||
X = np.arange(sim.A.size).reshape(sim.A.shape) % sim.A.shape[0] | ||
Y = (np.arange(sim.A.size).reshape(sim.A.shape) % sim.A.shape[1]).T | ||
|
||
U = cos(sim.A) | ||
V = sin(sim.A) | ||
|
||
fig, ax = plt.subplots(1, 1, figsize=(15, 15)) | ||
|
||
rects = [] | ||
|
||
# create rectangles for vortex/antivortex determination | ||
for i in range(sim.V.shape[0]): | ||
for j in range(sim.V.shape[1]): | ||
rect = patches.Rectangle(xy=(i, j), height=1, width=1) | ||
rects.append(rect) | ||
rects = PatchCollection(rects) | ||
|
||
# Set colors for the rectangles | ||
col = 'RdBu' | ||
r_cmap = plt.get_cmap(col) | ||
r_cmap_r = plt.get_cmap(col + "_r") # eto kostil' =) | ||
rects.set_cmap(r_cmap) | ||
rects.set_clim(vmin=-1, vmax=1) | ||
|
||
rects.set_animated(True) | ||
rects.set_array(sim.V.flatten('F') / 2) | ||
ax.add_collection(rects) | ||
|
||
# create legend | ||
legend_boxes = [patches.Patch(facecolor=r_cmap(0.7), label='Antiortex'), | ||
patches.Patch(facecolor=r_cmap_r(0.7), label='Vortex')] | ||
ax.legend(handles=legend_boxes) | ||
|
||
# build an initial quiver plot | ||
q = ax.quiver(X, Y, U, V, pivot='tail', cmap=plt.cm.get_cmap('hsv'), units='inches', scale=4) | ||
fig.colorbar(q, label='Angles (2 pi)') | ||
ax.set_xlim(-1, sim.A.shape[0]) | ||
ax.set_ylim(-1, sim.A.shape[1]) | ||
q.set_UVC(U, V, C=sim.A) | ||
|
||
plt.show() | ||
|
||
return q, fig, rects | ||
|
||
if __name__=="__main__": | ||
sim = XYMetropolis((50,50), | ||
beta=1, | ||
J=5, | ||
random_state=5, | ||
initial_state='hot') | ||
sim.simulate(2000000) | ||
visualise(sim) |