Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Interpolation & ParametrizedInterpolation #314

Merged
merged 46 commits into from
Oct 24, 2024
Merged
Show file tree
Hide file tree
Changes from 32 commits
Commits
Show all changes
46 commits
Select commit Hold shift + click to select a range
0ba28ad
feat: add `ParametrizedInterpolation`
SebastianM-C Aug 2, 2024
1b3d83e
refactor: add derivative pass-through
SebastianM-C Aug 5, 2024
aed0481
test: add test for ParametrizedInterpolation
SebastianM-C Aug 5, 2024
770ea8d
refactor: add support for arbitrary args in the interpolation constru…
SebastianM-C Aug 5, 2024
89cc333
docs: add docstring for `ParametrizedInterpolation`
SebastianM-C Aug 5, 2024
2b82a13
test: add test for `BSplineInterpolation`
SebastianM-C Aug 5, 2024
fd51e97
docs: fix namespacing in DC motor tutorial
SebastianM-C Aug 5, 2024
339db5a
refactor: cache the interpolation manually
SebastianM-C Aug 16, 2024
29dac5f
refactor: make cached_interpolation work with Duals
SebastianM-C Aug 16, 2024
4110a35
test: add tests for changing data in ParametrizedInterpolation
SebastianM-C Aug 16, 2024
df90209
build: add compat for test deps
SebastianM-C Aug 27, 2024
9eed4da
style: fix formatting
SebastianM-C Aug 27, 2024
748444a
test: fix test dep for ParametrizedInterpolation
SebastianM-C Aug 27, 2024
de3ccbd
docs: update docs to ParametrizedInterpolation
SebastianM-C Aug 27, 2024
40dcd28
refactor: make use of callable parameters to simplify the implementation
SebastianM-C Sep 26, 2024
9bc6f1d
test: refactor test
SebastianM-C Sep 26, 2024
50c9539
feat: add InterpolationBlock
SebastianM-C Oct 3, 2024
367a4c9
refactor: remove DataInterpolations extension
SebastianM-C Oct 3, 2024
bd276ec
refactor: add custom `t` for ParametrizedInterpolationBlock
SebastianM-C Oct 3, 2024
3cf6e6c
test: add tests for `InterpolationBlock`
SebastianM-C Oct 3, 2024
223826f
docs: add docs for int4erpolation blocks
SebastianM-C Oct 3, 2024
6a97072
refactor: revert renaming for the interpolation components
SebastianM-C Oct 3, 2024
9cbae31
refactor: add inputs to the interpolation components
SebastianM-C Oct 3, 2024
59c62fc
docs: update docs for interpolations
SebastianM-C Oct 3, 2024
c8abefe
docs: fix dc motor initialization
SebastianM-C Oct 3, 2024
57a101e
style: fix formatting
SebastianM-C Oct 3, 2024
d26935b
chore: fix typos
SebastianM-C Oct 3, 2024
96040a1
build: bump MTK and Symbolics
SebastianM-C Oct 12, 2024
dc71017
Update src/Blocks/sources.jl
ChrisRackauckas Oct 16, 2024
1bb50dd
Update src/Blocks/sources.jl
ChrisRackauckas Oct 16, 2024
46fdf82
Update src/Blocks/sources.jl
ChrisRackauckas Oct 16, 2024
5590146
Update src/Blocks/sources.jl
ChrisRackauckas Oct 18, 2024
4054d64
Update src/Blocks/sources.jl
ChrisRackauckas Oct 20, 2024
2569794
Merge branch 'main' into smc/interp
ChrisRackauckas Oct 20, 2024
762eb74
add compats
SebastianM-C Oct 20, 2024
5818f52
add docstring
SebastianM-C Oct 20, 2024
c91104d
Update input_component.md
ChrisRackauckas Oct 20, 2024
6968bbc
Merge branch 'smc/interp' of github.com:SebastianM-C/ModelingToolkitS…
SebastianM-C Oct 20, 2024
4de943f
try to fix docs
SebastianM-C Oct 20, 2024
2ee5ecd
fix sampled data docs
SebastianM-C Oct 20, 2024
95c24d8
fix typos & avoid running SampledData for now
SebastianM-C Oct 20, 2024
6f549b5
test: add test making sure that the initialization works
SebastianM-C Oct 22, 2024
3c8f2da
docs: fix initialization
SebastianM-C Oct 22, 2024
e2f2859
build: bump MTK
SebastianM-C Oct 24, 2024
8dc639a
test: add DataFrames to test deps
SebastianM-C Oct 24, 2024
cfee55c
build: add DataFrames compat
SebastianM-C Oct 24, 2024
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 13 additions & 4 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -9,33 +9,42 @@ DiffEqBase = "2b5f629d-d688-5b77-993f-72d75c75574e"
IfElse = "615f187c-cbe4-4ef1-ba3b-2fcf58d6d173"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
ModelingToolkit = "961ee093-0014-501f-94e3-6117800e7a78"
PreallocationTools = "d236fae5-4411-538c-8e31-a6e3d9e00b46"
Symbolics = "0c5d862f-8b57-4792-8d23-62f2024744c7"

[compat]
Aqua = "0.8"
ChainRulesCore = "1.24"
ControlSystemsBase = "1.4"
DataInterpolations = "4.6"
DataInterpolations = "4.6, 5, 6"
DiffEqBase = "6.152"
IfElse = "0.1"
LinearAlgebra = "1.10"
ModelingToolkit = "9.32"
ModelingToolkit = "9.46"
Optimization = "3.27"
OrdinaryDiffEq = "6.87"
OrdinaryDiffEqDefault = "1.1"
PreallocationTools = "0.4.23"
SafeTestsets = "0.1"
Symbolics = "5.36, 6"
SciMLStructures = "1.4.2"
SymbolicIndexingInterface = "0.3.28"
Symbolics = "6.14"
Test = "1"
julia = "1.10"

[extras]
Aqua = "4c88cf16-eb10-579e-8560-4a9242c79595"
ControlSystemsBase = "aaaaaaaa-a6ca-5380-bf3e-84a91bcd477e"
DataInterpolations = "82cc6244-b520-54b8-b5a6-8a565e85f1d0"
ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Optimization = "7f7a1694-90dd-40f0-9382-eb1efda571ba"
OrdinaryDiffEq = "1dea7af3-3e70-54e6-95c3-0bf5283fa5ed"
OrdinaryDiffEqDefault = "50262376-6c5a-4cf5-baba-aaf4f84d72d7"
SafeTestsets = "1bc83da4-3b8d-516f-aca4-4fe02f6d838f"
SciMLStructures = "53ae85a6-f571-4167-b2af-e1d143709226"
SymbolicIndexingInterface = "2efcf032-c050-4f8e-a9bb-153293bab1f5"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"

[targets]
test = ["Aqua", "LinearAlgebra", "OrdinaryDiffEq", "OrdinaryDiffEqDefault", "SafeTestsets", "Test", "ControlSystemsBase", "DataInterpolations"]
test = ["Aqua", "LinearAlgebra", "OrdinaryDiffEqDefault", "OrdinaryDiffEq", "Optimization", "SafeTestsets", "Test", "ControlSystemsBase", "DataInterpolations", "SciMLStructures", "SymbolicIndexingInterface", "ForwardDiff"]
4 changes: 4 additions & 0 deletions docs/Project.toml
Original file line number Diff line number Diff line change
@@ -1,5 +1,7 @@
[deps]
ControlSystemsBase = "aaaaaaaa-a6ca-5380-bf3e-84a91bcd477e"
DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
DataInterpolations = "82cc6244-b520-54b8-b5a6-8a565e85f1d0"
DifferentialEquations = "0c46a032-eb83-5123-abaf-570d42b7fbaa"
Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4"
IfElse = "615f187c-cbe4-4ef1-ba3b-2fcf58d6d173"
Expand All @@ -10,6 +12,8 @@ Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80"

[compat]
ControlSystemsBase = "1.1"
DataFrames = "1.7"
DataInterpolations = "6.4"
DifferentialEquations = "7.6"
Documenter = "1"
IfElse = "0.1"
Expand Down
6 changes: 3 additions & 3 deletions docs/src/tutorials/dc_motor_pi.md
Original file line number Diff line number Diff line change
Expand Up @@ -77,7 +77,7 @@ so that it can be represented as a system of `ODEs` (ordinary differential equat

```@example dc_motor_pi
sys = structural_simplify(model)
prob = ODEProblem(sys, unknowns(sys) .=> 0.0, (0, 6.0))
prob = ODEProblem(sys, [sys.L1.i => 0.0], (0, 6.0))
sol = solve(prob)

p1 = plot(sol.t, sol[sys.inertia.w], ylabel = "Angular Vel. in rad/s",
Expand All @@ -92,8 +92,8 @@ plot(p1, p2, layout = (2, 1))
When implementing and tuning a control system in simulation, it is a good practice to analyze the closed-loop properties and verify robustness of the closed-loop with respect to, e.g., modeling errors. To facilitate this, we added two analysis points to the set of connections above, more specifically, we added the analysis points named `:y` and `:u` to the connections (for more details on analysis points, see [Linear Analysis](@ref))

```julia
connect(sys.speed_sensor.w, :y, feedback.input2)
connect(sys.pi_controller.ctr_output, :u, source.V)
connect(sys.speed_sensor.w, :y, sys.feedback.input2)
connect(sys.pi_controller.ctr_output, :u, sys.source.V)
```

one at the plant output (`:y`) and one at the plant input (`:u`). We may use these analysis points to calculate, e.g., sensitivity functions, illustrated below. Here, we calculate the sensitivity function $S(s)$ and the complimentary sensitivity function $T(s) = I - S(s)$, defined as
Expand Down
153 changes: 129 additions & 24 deletions docs/src/tutorials/input_component.md
Original file line number Diff line number Diff line change
@@ -1,57 +1,162 @@
# Running Models with Discrete Data

There are 3 ways to include data as part of a model.
There are 4 ways to include data as part of a model.

1. using `ModelingToolkitStandardLibrary.Blocks.TimeVaryingFunction`
2. using a custom component with external data
3. using `ModelingToolkitStandardLibrary.Blocks.SampledData`
1. using `ModelingToolkitStandardLibrary.Blocks.Interpolation`
2. using `ModelingToolkitStandardLibrary.Blocks.ParametrizedInterpolation`
3. using a custom component with external data (not recommended)
4. using `ModelingToolkitStandardLibrary.Blocks.SampledData` (legacy)

This tutorial demonstrate each case and explain the pros and cons of each.

## `TimeVaryingFunction` Component
## `Interpolation` Block

The `ModelingToolkitStandardLibrary.Blocks.TimeVaryingFunction` component is easy to use and is performant. However the data is locked to the `ODESystem` and can only be changed by building a new `ODESystem`. Therefore, running a batch of data would not be efficient. Below is an example of how to use the `TimeVaryingFunction` with `DataInterpolations` to build the function from sampled discrete data.
The `ModelingToolkitStandardLibrary.Blocks.Interpolation` component is easy to use and is performant.
It is similar to using callable parameters, but it provides a block interface with `RealInput` and `RealOutput` connectors.
The `Interpolation` is compatible with interpolation types from `DataInterpolation`.

```julia
```@docs
ModelingToolkitStandardLibrary.Blocks.Interpolation
```

Here is an example on how to use it. Let's consider a mass-spring-damper system, where
we have an external force as an input. We then generate some example data in a `DataFrame`
that would represent a measurement of the input. In a more realistic case, this `DataFrame`
would be read from a file.

```@example interpolation_block
using ModelingToolkit
using ModelingToolkit: t_nounits as t, D_nounits as D
using ModelingToolkitStandardLibrary.Blocks
using DataInterpolations
using OrdinaryDiffEq
using DataFrames
using Plots

function MassSpringDamper(; name)
@named input = RealInput()
@variables f(t)=0 x(t)=0 dx(t)=0 ddx(t)=0
@parameters m=10 k=1000 d=1

eqs = [
f ~ input.u
ddx * 10 ~ k * x + d * dx + f
D(x) ~ dx
D(dx) ~ ddx]

ODESystem(eqs, t, [], []; name, systems = [input])
end

function MassSpringDamperSystem(data, time; name)
@named src = Interpolation(LinearInterpolation, data, time)
@named clk = ContinuousClock()
@named model = MassSpringDamper()

eqs = [
connect(src.input, clk.output)
connect(src.output, model.input)
]

ODESystem(eqs, t, [], []; name, systems = [src, clk, model])
end

function generate_data()
dt = 4e-4
time = 0:dt:0.1
data = sin.(2 * pi * time * 100)

return DataFrame(; time, data)
end

df = generate_data() # example data

@named system = MassSpringDamperSystem(df.data, df.time)
sys = structural_simplify(system)
prob = ODEProblem(sys, [], (0, df.time[end]))
sol = solve(prob)
plot(sol)
```

## `ParametrizedInterpolation` Block

function System(f; name)
src = TimeVaryingFunction(f)
The `ModelingToolkitStandardLibrary.Blocks.ParametrizedInterpolation` component is similar to `Interpolation`, but as the name suggests, it is parametrized by the data, allowing one to change the underlying data without rebuilding the model as the data is represented via vector parameters.
The main advantage of this block over the [`Interpolation`](@ref) one is that one can use it for optimization problems. Currently, this supports forward mode AD via ForwardDiff, but due to the increased flexibility of the types in the component, this is not as fast as the `Interpolation` block,
so it is recommended to use only when the added flexibility is required.

```@docs
ModelingToolkitStandardLibrary.Blocks.ParametrizedInterpolation
```

Here is an example on how to use it

```@example parametrized_interpolation
using ModelingToolkit
using ModelingToolkit: t_nounits as t, D_nounits as D
using ModelingToolkitStandardLibrary.Blocks
using DataInterpolations
using OrdinaryDiffEq
using DataFrames
using Plots

function MassSpringDamper(; name)
@named input = RealInput()
vars = @variables f(t)=0 x(t)=0 dx(t)=0 ddx(t)=0
pars = @parameters m=10 k=1000 d=1

eqs = [f ~ src.output.u
eqs = [
f ~ input.u
ddx * 10 ~ k * x + d * dx + f
D(x) ~ dx
D(dx) ~ ddx]

ODESystem(eqs, t, vars, pars; systems = [src], name)
ODESystem(eqs, t, vars, pars; name, systems = [input])
end

dt = 4e-4
time = 0:dt:0.1
data = sin.(2 * pi * time * 100) # example data
function MassSpringDamperSystem(data, time; name)
@named src = ParametrizedInterpolation(LinearInterpolation, data, time)
@named clk = ContinuousClock()
@named model = MassSpringDamper()

f = LinearInterpolation(data, time)
eqs = [
connect(model.input, src.output)
connect(src.input, clk.output)
]

@named system = System(f)
ODESystem(eqs, t, [], []; name, systems = [src, clk, model])
end

function generate_data()
dt = 4e-4
time = 0:dt:0.1
data = sin.(2 * pi * time * 100)

return DataFrame(; time, data)
end

df = generate_data() # example data

@named system = MassSpringDamperSystem(df.data, df.time)
sys = structural_simplify(system)
prob = ODEProblem(sys, [], (0, time[end]))
sol = solve(prob, ImplicitEuler())
prob = ODEProblem(sys, [], (0, df.time[end]))
sol = solve(prob)
plot(sol)
```

If we want to run a new data set, this requires building a new `LinearInterpolation` and `ODESystem` followed by running `structural_simplify`, all of which takes time. Therefore, to run several pieces of data it's better to re-use an `ODESystem`. The next couple methods will demonstrate how to do this.
If we want to run a new data set, this requires only remaking the problem and solving again
```@example parametrized_interpolation
prob2 = remake(prob, p = [sys.src.data => ones(length(data))])
sol2 = solve(prob2)
plot(sol2)
```

!!! note
Note that when changing the data, the length of the new data must be the same as the length of the original data.

## Custom Component with External Data

The below code shows how to include data using a `Ref` and registered `get_sampled_data` function. This example uses a very basic function which requires non-adaptive solving and sampled data. As can be seen, the data can easily be set and changed before solving.

```julia
```@example custom_component_external_data
const rdata = Ref{Vector{Float64}}()

# Data Sets
Expand Down Expand Up @@ -105,9 +210,9 @@ Additional code could be added to resolve this issue, for example by using a `Re

To resolve the issues presented above, the `ModelingToolkitStandardLibrary.Blocks.SampledData` component can be used which allows for a resusable `ODESystem` and self contained data which ensures a solution which remains valid for it's lifetime. Now it's possible to also parallelize the call to `solve()`.

```julia
```@example sampled_data_component
function System(; name)
src = SampledData(Float64)
@named src = SampledData(Float64)

vars = @variables f(t)=0 x(t)=0 dx(t)=0 ddx(t)=0
pars = @parameters m=10 k=1000 d=1
Expand All @@ -121,9 +226,9 @@ function System(; name)
end

@named system = System()
sys = structural_simplify(system)
sys = structural_simplify(system, split=false)
s = complete(system)
prob = ODEProblem(sys, [], (0, time[end]); tofloat = false)
prob = ODEProblem(sys, [], (0, time[end]); tofloat = false, use_union=true)
defs = ModelingToolkit.defaults(sys)

function get_prob(data)
Expand Down
3 changes: 2 additions & 1 deletion src/Blocks/Blocks.jl
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,8 @@ export Log, Log10
include("math.jl")

export Constant, TimeVaryingFunction, Sine, Cosine, ContinuousClock, Ramp, Step, ExpSine,
Square, Triangular, Parameter, SampledData
Square, Triangular, Parameter, SampledData,
Interpolation, ParametrizedInterpolation
include("sources.jl")

export Limiter, DeadZone, SlewRateLimiter
Expand Down
Loading
Loading