Skip to content

Snowflake Arcticのハッカソンに向けた機能検証のために作成したプログラム群

Notifications You must be signed in to change notification settings

Sakatoku/arctic-hackathon-2024

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

99 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SAKArctic Travel Agency: A concept application for Snowflake Arctic Hackathon

About

This application serves as a trip plan generator. It interacts with users through a chat interface, gathering their preferences and requirements, and then creates a customized trip plan based on the collected information.
We create this application for THE FUTURE OF AI IS OPEN.

Our project story

Japan is often referred to as an island nation, where many people are deeply connected to their hometowns and not everyone participates in international activities.
However, post-COVID-19, an increasing number of Japanese are eager to explore the world, especially engineers fascinated by the potential of Data Cloud.

So, how can we, who might not be seasoned travelers, enjoy our journeys to the fullest?

We have developed an innovative application that leverages diverse datasets from the Snowflake Marketplace and the Internet, utilizing Large Language Models (LLMs) to craft personalized travel plans tailored to a wide array of preferences and needs. By using this application, you can enjoy comfortable, safe, and enriching travels.
Join us in exploring the world with our cutting-edge technology. We look forward to meeting you at the Snowflake Data Cloud Summit 2024!

日本が島国であるということは、多くの日本人が口にします。多くの日本人は自身の出身地に根付いた暮らしをしており、すべての人が国際的に活動しているわけではありません。
しかし、COVID-19の危機を乗り越えて、世界に旅立つ日本人が増えてきました。それがデータクラウドの可能性に魅了されたエンジニアたちであれば、なおさら。

そこで、旅慣れていない我々が旅を楽しむための助けになるものは何でしょうか?

私たちは、Snowflake Marketplaceやインターネット上に存在する多様なデータセットを活用し、LLM(大規模言語モデル)を通じて、多様なニーズに対応できるパーソライズされた旅行プランを提案するアプリケーションを実現しました。
このアプリケーションを用いることで、快適で安全、そして実りのある旅を楽しめることでしょう。
私たちの最新のテクノロジーと一緒に世界を探検してください。Snowflake Data Cloud Summit 2024で皆様にお会いできることを楽しみにしています!

Concept Art

How does this application work

Step 1: Data preparation

Step1

Here are the data preparation steps: README

Step 2: Interview user about his preferences

Step 3: Extract data from database

Step3

Step 4: Generate plan and visualize it

Step4

Screenshots

Interview part:
Interview

Visualization part:
Visualization

Requirements

requirements.txtを参照。

streamlit
streamlit-folium
snowflake-connector-python
snowflake-snowpark-python
snowflake-ml-python[all]
pandas
replicate
beautifulsoup4

Usage

On local environments

First, create secrets.toml file.

[Snowflake]
user = "USER"
password = "PASSWORD"
account = "ACCOUNT-IDENTIFIER"
role = "ROLE"
warehouse = "WAREHOUSE"

[Replicate]
apikey = "r8_****"

Next, type the following command:

streamlit run demo/home.py

On Streamlit Cloud

Create app with demo/home.py for Main file path parameter, and input Secrets as following format.

[Snowflake]
user = "USER"
password = "PASSWORD"
account = "ACCOUNT-IDENTIFIER"
role = "ROLE"
warehouse = "WAREHOUSE"

[Replicate]
apikey = "r8_****"

Authors

About

Snowflake Arcticのハッカソンに向けた機能検証のために作成したプログラム群

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •