-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
72 lines (64 loc) · 2.88 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import numpy as np
from PIL import Image
from pickle import load
import matplotlib.pyplot as plt
from keras.models import load_model
from keras.preprocessing.image import load_img, img_to_array
from utils.model import CNNModel, generate_caption_beam_search
import os
from config import config
"""
*Some simple checking
"""
assert type(config['max_length']) is int, 'Please provide an integer value for `max_length` parameter in config.py file'
assert type(config['beam_search_k']) is int, 'Please provide an integer value for `beam_search_k` parameter in config.py file'
# Extract features from each image in the directory
def extract_features(filename, model, model_type):
if model_type == 'inceptionv3':
from keras.applications.inception_v3 import preprocess_input
target_size = (299, 299)
elif model_type == 'vgg16':
from keras.applications.vgg16 import preprocess_input
target_size = (224, 224)
# Loading and resizing image
image = load_img(filename, target_size=target_size)
# Convert the image pixels to a numpy array
image = img_to_array(image)
# Reshape data for the model
image = image.reshape((1, image.shape[0], image.shape[1], image.shape[2]))
# Prepare the image for the CNN Model model
image = preprocess_input(image)
# Pass image into model to get encoded features
features = model.predict(image, verbose=0)
return features
# Load the tokenizer
tokenizer_path = config['tokenizer_path']
tokenizer = load(open(tokenizer_path, 'rb'))
# Max sequence length (from training)
max_length = config['max_length']
# Load the model
caption_model = load_model(config['model_load_path'])
image_model = CNNModel(config['model_type'])
# Load and prepare the image
for image_file in os.listdir(config['test_data_path']):
if(image_file.split('--')[0]=='output'):
continue
if(image_file.split('.')[1]=='jpg' or image_file.split('.')[1]=='jpeg'):
print('Generating caption for {}'.format(image_file))
# Encode image using CNN Model
image = extract_features(config['test_data_path']+image_file, image_model, config['model_type'])
# Generate caption using Decoder RNN Model + BEAM search
generated_caption = generate_caption_beam_search(caption_model, tokenizer, image, max_length, beam_index=config['beam_search_k'])
# Remove startseq and endseq
caption = 'Caption: ' + generated_caption.split()[1].capitalize()
for x in generated_caption.split()[2:len(generated_caption.split())-1]:
caption = caption + ' ' + x
caption += '.'
# Show image and its caption
pil_im = Image.open(config['test_data_path']+image_file, 'r')
fig, ax = plt.subplots(figsize=(8, 8))
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
_ = ax.imshow(np.asarray(pil_im), interpolation='nearest')
_ = ax.set_title("BEAM Search with k={}\n{}".format(config['beam_search_k'],caption),fontdict={'fontsize': '20','fontweight' : '40'})
plt.savefig(config['test_data_path']+'output--'+image_file)